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Problem 9.1

Suppose you have a two-class classification problem, with D-dimensional observations given by

~x =

 x1

...
xD


The prior probabilities are given by the known parameter π0:

pY (0) = π0, pY (1) = 1− π0

The likelihoods are given by the known parameters ~µ0 and ~µ1, and by a shared covariance matrix Σ that is
the same between the two classes:

p ~X|Y (~x|0) =
1

(2π)
D/2 |Σ|1/2

e−
1
2 (~x−~µ0)T Σ−1(~x−~µ0)

p ~X|Y (~x|1) =
1

(2π)
D/2 |Σ|1/2

e−
1
2 (~x−~µ1)T Σ−1(~x−~µ1)

Demonstrate that the Bayesian classifier, in this case, is a linear classifier, h(~x) = u
(
~wT~x+ b

)
. Find the

weight vector ~w and the offset b.

Problem 9.2

Suppose you have a two-class classification problem, with D-dimensional observations given by

~x =

 x1

...
xD


The prior probabilities are given by the known parameter π0:

pY (0) = π0, pY (1) = 1− π0

The likelihoods are given by the known parameters ~µ0 and ~µ1, and by DIFFERENT known covariance
matrices Σ0 and Σ1:

p ~X|Y (~x|0) =
1

(2π)
D/2 |Σ0|1/2

e−
1
2 (~x−~µ0)T Σ−1

0 (~x−~µ0)

p ~X|Y (~x|1) =
1

(2π)
D/2 |Σ1|1/2

e−
1
2 (~x−~µ1)T Σ−1

1 (~x−~µ1)

Demonstrate that the Bayesian classifier, in this case, is a QUADRATIC classifier, that checks whether ~x is
closer to ~µ1 or ~µ0, and classifies accordingly. . . except that “closer to” is defined using the class-dependent
Mahalanobis distances,

h(~x) = u
(
d0(~x, ~µ0)2 − d1(~x, ~µ1)2 + b

)
1



d1 is a Mahalanobis distance with covariance matrix Σ1, d0 is a Mahalanobis distance with covariance matrix
Σ0, and b is a constant. Find b.

Problem 9.3

Suppose you have a training dataset, D, that contains N vectors,

D = {~x1, . . . , ~xN} , ~xn =

 x1n

...
xDn


All drawn from a D-dimensional Gaussian distribution with mean ~µ and covariance matrix Σ:

p ~X(~x) =
1

(2π)
D/2 |Σ|1/2

e−
1
2 (~x−~µ)T Σ−1(~x−~µ)

Suppose that you know Σ, but you don’t know ~µ. Your goal is to find a good estimate of ~µ.
Suppose that the training vectors are i.i.d., so that the likelihood of the training dataset is

p(D) =

N∏
n=1

p ~X(~xn)

Define the maximum-likelihood estimator of ~µ to be

µ̂ML = arg max
~µ

p(D)

Find µ̂ML.
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