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What we’ve learned so far
• Markov Decision Process (MDP): Given P(s’|s,a) and R(s), you can 

solve for 𝜋∗(𝑠), the optimal policy, by finding U(s), the value of each 
state, using either value iteration or policy iteration.
• Model-Based Reinforcement Learning:  If P(s’|s,a) and R(s) are 

unknown, you can find for 𝜋∗(𝑠) by using the observations-model-
policy loop:
• Observations: Create a training dataset by trying n consecutive actions, using 

an exploration-exploitation tradeoff like epsilon-first or epsilon-greedy
• Model: Estimate P(s’|s,a) and R(s) using maximum likelihood estimation or 

Laplace smoothing
• Policy: Find the optimum policy using value iteration or policy iteration.



Today: Q-Learning

• If you knew P(s’|s,a) and R(s), how would you define the quality of an 
action, Q(s,a)?
• Q-learning
• Key concepts
• TD-learning: a practical algorithm for Q-learning

• Off-policy vs. on-policy learning: TD vs. SARSA
• Batch learning



Bellman’s Equation

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
"∈$(&)

-
&(

𝑃 𝑠( 𝑠, 𝑎 𝑈(𝑠()

When we talked about solving Bellman’s equation before, we said that 
the optimum policy is given by the “max” operation: the action that 
gives you that maximum is the action you should take.



The Quality of an Action

The goal of Q-learning is to learn a function, Q(s,a), such that the best 
action to take is the action that maximizes Q:

𝜋∗(𝑠)= argmax
"∈$(&)

𝑄(𝑠, 𝑎)

How about if we define  Q(s,a) to be “The expected future reward I will 
achieve if I take action a in state s?”



The Quality of an Action

Suppose we know everything: we know P(s’|s,a), R(s), 𝛾, and U(s).  
Then we collect our total expected future reward by doing these things:
• Collect our current reward, R(s)
• Discount all future rewards by 𝛾
• Make a transition to a future state, s’, according to P(s’|s,a)
• Then collect all future rewards, U(s’)

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾-
&(

𝑃 𝑠( 𝑠, 𝑎 𝑈(𝑠()



The Quality of an Action

Whoa!  So Bellman’s equation is actually just a simplified version of the 
Q-function:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
"∈$(&)

-
&(

𝑃 𝑠( 𝑠, 𝑎 𝑈(𝑠()

𝑈(𝑠) = max
"∈$(&)

𝑄(𝑠, 𝑎)



The Q-function: recursive definition

Or, to look at it another way, we could plug 𝑈(𝑠′) = max
!"∈$(&")

𝑄(𝑠′, 𝑎′) into the 
definition of the Q-function in order to get

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾0
&"

𝑃 𝑠" 𝑠, 𝑎 max
!"∈$(&")

𝑄(𝑠′, 𝑎′)

Remember, it has these steps::
• Collect our current reward, R(s)
• Discount all future rewards by 𝛾
• Make a transition to a future state, s’, according to P(s’|s,a)
• Choose the optimum action, a’, from state s’, and collect all future rewards.



Example: Gridworld

𝑅(𝑠) = 4
+1 𝑠 = (4,3)
−1 𝑠 = (4,2)
−0.04 otherwise

𝑃 𝑠( 𝑠, 𝑎 = 4
0.8 intended
0.1 fall left
0.1 fall right

𝛾 = 1



Gridworld: Utility of each state

0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

(Calculated using value iteration.)

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
"∈$(&)

-
&(

𝑃 𝑠( 𝑠, 𝑎 𝑈(𝑠()



Gridworld: The Q-function

Calculated using a two-step value 
iteration: 

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾0
&"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

𝑈(𝑠) = max
!∈$(&)

𝑄(𝑠, 𝑎)

0.78
0.77 0.81

0.74

0.83
0.78 0.87

0.83

0.88
0.81 0.92

0.68
0.66

0.64 -.69
0.42

-0.74
0.39 0.21

0.37

0.59
0.61 0.40

0.55

0.62
0.66 0.58

0.62

0.71
0.67 0.63

0.66

0.76
0.72 0.72

0.68



Gridworld: Relationship between Q and U
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!∈#(%)

𝑄(𝑠, 𝑎)



Today: Q-Learning

• If you knew P(s’|s,a) and R(s), how would you define the quality of an 
action, Q(s,a)?
• Q-learning
• Key concepts
• TD-learning: a practical algorithm for Q-learning

• Off-policy vs. on-policy learning: TD vs. SARSA
• Batch learning



Reinforcement learning: Key concepts

Key concept: What if you don’t know P(s’|s,a) and R(s)?  Can you still 
estimate Q(s,a)?
1. Method #1: Model-based learning.  Estimate P(s’|s,a) and R(s), then 

use them to compute Q(s,a).
2. Method #2 (today): Model-free learning.  Try some stuff, observe 

the results, use the results to estimate Q(s,a).



Q-learning

Q(s,a) is the total of all current & future rewards that you expect to get 
if you perform action a in state s.

…so how about this strategy…

1. Play the game an infinite number of times.
2. Each time you try action a in state s, measure the reward that you 

receive from that point onward for the rest of the game.
3. Average.



Q-learning: a slightly more practical version

Q(s,a) is the total of all current & future rewards that you expect to get if you 
perform action a in state s.

…so how about this strategy…

1. Play the game an infinite finite number of times.  Keep track of 𝑸𝒕(𝒔, 𝒂), 
the estimate of Q after the tth iteration.

2. Each time you try action a in state s, measure the reward that you 
receive from that point onward for the rest of the game. in the current 
state, plus 𝜸 times 𝑸𝒕(𝒔′, 𝒂′). 

3. Average 𝑸𝒕 with #2 in order to get 𝑸𝒕)𝟏.



Q-learning
Remember that the true Q-function is given by Bellman’s equation to 
be: 

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾-
&(

𝑃 𝑠( 𝑠, 𝑎 max
"(∈$(&()

𝑄(𝑠′, 𝑎′)

But in Q-learning, we have the following problems:
• We don’t know 𝑅(𝑠)
• We don’t know 𝑃(𝑠’|𝑠, 𝑎)
• We don’t yet know 𝑄(𝑠, 𝑎).



TD learning

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾-
&(

𝑃 𝑠( 𝑠, 𝑎 max
"(∈$(&()

𝑄(𝑠′, 𝑎′)

Let’s solve these problems as follows:
• Instead of 𝑅(𝑠), use 𝑅)(𝑠), the reward we got this time.
• Instead of summing over 𝑃(𝑠’|𝑠, 𝑎), just set s’ equal to whatever state 

followed s this time.
• Instead of the true value of 𝑄(𝑠, 𝑎), use our current estimate, 
𝑄)(𝑠, 𝑎).



TD learning
𝑄*+,"* 𝑠, 𝑎 = 𝑅)(𝑠) + 𝛾 max

"(∈$(&()
𝑄)(𝑠′, 𝑎′)

The problem with this solution is that it’s noisy.  s’ was chosen 
completely at random, so 𝑄*+,"* 𝑠, 𝑎 might be very far away from 
𝑄 𝑠, 𝑎 .  It might even be worse than 𝑄)(𝑠, 𝑎).
We can solve this problem by interpolating, using an interpolation 
constant 𝛼 that’s 0 < 𝛼 < 1:

𝑄)-. 𝑠, 𝑎 = 1 − 𝛼 𝑄) 𝑠, 𝑎 + 𝛼𝑄*+,"* 𝑠, 𝑎

= 𝑄) 𝑠, 𝑎 + 𝛼 𝑄*+,"* 𝑠, 𝑎 − 𝑄) 𝑠, 𝑎



TD learning
This quantity, 𝑑𝑄! 𝑠, 𝑎 = 𝑄"#$%" 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎 , is called the “time difference.”  The 
whole algorithm is therefore called “time difference learning” (TD learning).  It goes like 
this:

1. When you reach state s, try some action a.  Observe the state s’ that you end up in, 
and the reward you receive, and then calculate Qlocal:

𝑄"#$%" 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾 max
%&∈((*&)

𝑄!(𝑠′, 𝑎′)

2. Calculate the time difference, and update:

𝑑𝑄! 𝑠, 𝑎 = 𝑄"#$%" 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎
𝑄!,- 𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑑𝑄! 𝑠, 𝑎

Repeat.



Today: Q-Learning

• If you knew P(s’|s,a) and R(s), how would you define the quality of an 
action, Q(s,a)?
• Q-learning
• Key concepts
• TD-learning: a practical algorithm for Q-learning

• Off-policy vs. on-policy learning: TD vs. SARSA
• Batch learning



Exploration versus exploitation

• TD-learning has one gap, still: when you reach state s, how do you 
choose an action?
• You might think that you just choose 𝑎∗ = max

"∈$(&)
𝑄) (𝑠, 𝑎), but that 

has the following problem: what if 𝑄) (𝑠, 𝑎) is wrong?
• The solution is to use an exploration strategy.  For example,
• Epsilon-first strategy: if there’s an action we’ve chosen less than 𝜖𝑁 times, 

then choose that.  Otherwise, choose 𝑎∗.
• Epsilon-greedy strategy: with probability 1 − 𝜖, choose 𝑎∗.  With probability 
𝜖, choose an action uniformly at random.



TD learning
Putting it all together, here’s the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation policy, 
𝜋"(𝑠), to choose some action 𝑎 = 𝜋"(𝑠).  

2. Observe the state s’ that you end up in, and the reward you receive, and then 
calculate Qlocal:

𝑄#$%&# 𝑠, 𝑎 = 𝑅"(𝑠) + 𝛾 max
&'∈)(+')

𝑄"(𝑠′, 𝑎′)

3. Calculate the time difference, and update:

𝑄"-. 𝑠, 𝑎 = 𝑄" 𝑠, 𝑎 + 𝛼 𝑄#$%&# 𝑠, 𝑎 − 𝑄" 𝑠, 𝑎

Repeat.



TD learning
Putting it all together, here’s the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation policy, 
𝜋"(𝑠), to choose some action 𝑎 = 𝜋"(𝑠).  

2. Observe the state s’ that you end up in, and the reward you receive, and then 
calculate Qlocal:

𝑄#$%&# 𝑠, 𝑎 = 𝑅"(𝑠) + 𝛾 max
&'∈)(+')

𝑄"(𝑠′, 𝑎′)

3. Calculate the time difference, and update:

𝑄"-. 𝑠, 𝑎 = 𝑄" 𝑠, 𝑎 + 𝛼 𝑄#$%&# 𝑠, 𝑎 − 𝑄" 𝑠, 𝑎

Repeat.

The action 
TD-learning 
assumes you 
will perform

The action 
you actually 
perform



TD learning is an off-policy learning algorithm 
TD learning is called an off-policy learning algorithm because it 
assumes an action

argmax
"(∈$(&()

𝑄)(𝑠′, 𝑎′)

…which is different from the action dictated by your current 
exploration versus exploitation policy

𝑎( = 𝜋)(𝑠′)
Sometimes off-policy learning converges slowly, for example, because 
the TD-learning update is not taking advantage of your exploration.



On-policy learning: SARSA
We can create an “on-policy learning” algorithm by deciding in advance which action (𝑎’) we’ll 
perform in state 𝑠’, and then using that action in the update equation:

1. Use your current exploration versus exploitation policy, 𝜋!(𝑠), to choose some action 
𝑎 = 𝜋!(𝑠).  

2. Observe the state 𝑠’ that you end up in, and then use your current policy to choose 
𝑎" = 𝜋!(𝑠′).

3. Calculate Qlocal and the update equation as:

𝑄#$%&# 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾𝑄!(𝑠′, 𝑎′)

𝑄!'( 𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑄#$%&# 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎

4. Go to step 2.



On-policy learning: SARSA
This algorithm is called SARSA (state-action-reward-state-action) 
because:
• In order to compute the TD-learning version of 𝑄*+,"*, you only need 

to know the tuple (𝑠, 𝑎, 𝑅, 𝑠’): 
𝑄*+,"* 𝑠, 𝑎 = 𝑅)(𝑠) + 𝛾 max

"(∈$(&()
𝑄)(𝑠′, 𝑎′)

• In order to compute the SARSA version of 𝑄*+,"*, you need to have 
already picked out (𝑠, 𝑎, 𝑅, 𝑠’, 𝑎′): 

𝑄*+,"* 𝑠, 𝑎 = 𝑅)(𝑠) + 𝛾𝑄)(𝑠′, 𝑎′)



Today: Q-Learning

• If you knew P(s’|s,a) and R(s), how would you define the quality of an 
action, Q(s,a)?
• Q-learning
• Key concepts
• TD-learning: a practical algorithm for Q-learning
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Batch learning

Both TD learning and SARSA can be performed in batch mode:
1. Play the game several times, using a fixed policy 𝜋+(𝑠).
2. Collect a training database of SARS or SARSA tuples:

𝒟 = 𝑠,, 𝑎,, 𝑅,, 𝑠," , … , 𝑠-, 𝑎-, 𝑅-, 𝑠-"

…or…
𝒟 = 𝑠,, 𝑎,, 𝑅,, 𝑠," , 𝑎," , … , 𝑠-, 𝑎-, 𝑅-, 𝑠-" , 𝑎-"

3. Compute the updates, 𝑄./0!.,,, … , 𝑄./0!.,, , and update Q:

𝑄+), 𝑠, 𝑎 = 𝑄+ 𝑠, 𝑎 + 𝛼 0
&.,!.2&,!

𝑄./0!.,3 − 𝑄+ 𝑠, 𝑎



Batch learning

• Both TD-learning and SARSA work pretty well when you have a 
discrete state space, s, and Q(s,a) is just a lookup table.
• When your state space is continuous-valued, then you have to use a 

neural network to estimate Q(s,a).  In that case, batch learning 
becomes much more important, to help you learn smoothly.
• … so I’ll talk more about batch learning when I talk about deep Q-

learning, on Friday.



Conclusions: Q-learning
• 𝑄(𝑠, 𝑎) is the expected reward you get by choosing action a in state s.  Its true value is 

given by Bellman’s equation as:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾0
&"

𝑃 𝑠" 𝑠, 𝑎 max
!"∈$(&")

𝑄(𝑠′, 𝑎′)

• If you don’t know 𝑃 𝑠" 𝑠, 𝑎 or 𝑅 𝑠 , you can learn 𝑄(𝑠, 𝑎) using TD-learning:
𝑄+), 𝑠, 𝑎 = 𝑄+ 𝑠, 𝑎 + 𝛼 𝑅+ 𝑠 + 𝛾 max

!/∈$ &/
𝑄+ 𝑠", 𝑎" − 𝑄+ 𝑠, 𝑎

• TD-learning is an off-policy algorithm.  SARSA is an example of an on-policy algorithm:
𝑄+), 𝑠, 𝑎 = 𝑄+ 𝑠, 𝑎 + 𝛼 𝑅+ 𝑠 + 𝛾𝑄+ 𝑠", 𝑎" − 𝑄+ 𝑠, 𝑎

• Batch learning collects a large number of SARS or SARSA tuples before each update:

𝑄+), 𝑠, 𝑎 = 𝑄+ 𝑠, 𝑎 + 𝛼 0
&.,!.2&,!

𝑄./0!.,3 − 𝑄+ 𝑠, 𝑎
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The robots of the world thank you for helping 
them find blue diamonds.

𝑸𝒕-𝟏 𝒔, 𝒂

= 𝑸𝒕 𝒔, 𝒂 + 𝜶 9
𝒔𝒊,𝒂𝒊4𝒔,𝒂

𝑸𝒍𝒐𝒄𝒂𝒍,𝒊 −𝑸𝒕 𝒔, 𝒂


