CS 440/ECE448 Lecture 31:
Q-Learning

Mark Hasegawa-Johnson, 4/15/2020

CC-BY 4.0: You may remix or redistribute if you cite
the source.

What we’ve learned so far

* Markov Decision Process (MDP): Given P(s’|s,a) and R(s), you can

solve for T*(s), the optimal policy, by finding U(s), the value of each
state, using either value iteration or policy iteration.

 Model-Based Reinforcement Learning: If P(s’|s,a) and R(s) are
unknown, you can find for 7*(s) by using the observations-model-
policy loop:
* Observations: Create a training dataset by trying n consecutive actions, using
an exploration-exploitation tradeoff like epsilon-first or epsilon-greedy

* Model: Estimate P(s’|s,a) and R(s) using maximum likelihood estimation or
Laplace smoothing

* Policy: Find the optimum policy using value iteration or policy iteration.

Today: Q-Learning

* If you knew P(s’|s,a) and R(s), how would you define the quality of an
action, Q(s,a)?

* Q-learning
* Key concepts
* TD-learning: a practical algorithm for Q-learning

» Off-policy vs. on-policy learning: TD vs. SARSA
* Batch learning

Bellman’s Equation

acA(s)

U(s) = R(s) + y max ZP(S’IS, a)U(s")

When we talked about solving Bellman’s equation before, we said that
the optimum policy is given by the “max” operation: the action that
gives you that maximum is the action you should take.

The Quality of an Action

The goal of Q-learning is to learn a function, Q(s,a), such that the best
action to take is the action that maximizes Q:

m*(s)=argmax Q(s,a)
acA(s)

How about if we define Q(s,a) to be “The expected future reward | will
achieve if | take action a in state s?”

The Quality of an Action

Suppose we know everything: we know P(s’[s,a), R(s), y, and U(s).
Then we collect our total expected future reward by doing these things:

 Collect our current reward, R(s)

* Discount all future rewards by y

* Make a transition to a future state, s’, according to P(s’|s,a)
* Then collect all future rewards, U(s’)

0(s,0) = R() +7) P(s'ls,)U(s")

The Quality of an Action

Whoa! So Bellman’s equation is actually just a simplified version of the
Q-function:

acA(s)

U(s) = R(s) + y max ZP(S’IS, a)U(s")

U(s) = mnax, Q(s,a)

The Q-function: recursive definition

Or, to look at it another way, we could plug U(s") = max Q(s’,a’) into the
s : : areA(sr)
definition of the Q-function in order to get

Q(s,a) = R(s) + yz P(s'|s,a) max Q(s’,a’)

arcA(sr)

Remember, it has these steps::

* Collect our current reward, R(s)

* Discount all future rewards by y

* Make a transition to a future state, s’, according to P(s’|s,a)

* Choose the optimum action, a’, from state s’, and collect all future rewards.

Example: Gridworld

|0

([+1

R(s) =4 -1

P(s'|s,a) =<

(0.8

0.1

Y

0.1

=1

s = (4,3)
s =(4,2)

_.—0.04 otherwise

intended

fall left
fall right

Gridworld: Utility of each state

U(s) = R(s) + y max

acA(s)

0.81

0.71

0.87

076 [o<

0.66

0.92

|0

0.61

0.39

z P(s'|s,a)U(s")

(Calculated using value iteration.)

Gridworld: The Q-function

0.78 0.83 0.88 Calculated using a two-step value
0.77-0.81| 0.78 0.87| 0.81 0.92 Iteration:

0.74 0.83 0.68

0.76 0.66 Q(s,a) = R(s) + yz P(s'|s,a)U(s")
0.720.72 0.64 - -.69 S/

0.68 0.42

0.71 0.62 0.59 :0.74 Us) = max Q(s,a)
0.670.63 0.660.58 | 0.610.40|0.39-0.21

0.66 0.62 0.55 0.37

Gridworld: Relationship between Q and U

U(s) = max Q(s,a)

acA(s)
0.78 0.83 0.88
0.770.81| 0.780.87|0.810.92 0.81 0.87 0.92
0.74 0.83 0.68
0.76 0.66
0.720.72 0.64 -.69 & 0.76 0.66
0.68 0.42
071 0.62 0.59 0.74
0.670.63 0.660.58 | 0.610.400.39-0.21| (.71 0.66 0.61 0.39
0.66 0.62 0.55 0.37

Today: Q-Learning

* Q-learning
* Key concepts
* TD-learning: a practical algorithm for Q-learning

» Off-policy vs. on-policy learning: TD vs. SARSA
* Batch learning

Reinforcement learning: Key concepts

Key concept: What if you don’t know P(s’|s,a) and R(s)? Can you still

estimate Q(s,a)?

1. Method #1: Model-based learning. Estimate P(s’|s,a) and R(s), then
use them to compute Q(s,a).

2. Method #2 (today): Model-free learning. Try some stuff, observe
the results, use the results to estimate Q(s,a).

Q-learning

Q(s,a) is the total of all current & future rewards that you expect to get
if you perform action a in state s.

...50 how about this strategy...

1. Play the game an infinite number of times.

2. Each time you try action a in state s, measure the reward that you
receive from that point onward for the rest of the game.

3. Average.

Q-learning: a slightly more practical version

Q(s,a) is the total of all current & future rewards that you expect to get if you
perform action a in state s.

...50 how about this strategy...

1. Play the game an-irfirite finite number of times. Keep track of Q;(s,a),
the estimate of Q after the t™ iteration.

2. Each time you try action a in state s, measure the reward that you
receive frem-thatpeinrteonwardfertherestefthegame: in the current

state, plus y times Q,(s’, a’).
3. Average Q, with #2 in order to get Q,..1.

Q-learning

Remember that the true Q-function is given by Bellman’s equation to
be:

Q(s,a) = R(s) + yz P(s'|s,a) max Q(s',a’)

areA(sr)

But in Q-learning, we have the following problems:
* We don’t know R(s)

* We don’t know P(s’|s, a)

* We don’t yet know Q(s, a).

TD learning

areA(sr)

Q(s,a) = R(s) + yz P(s'|s,a) max Q(s',a’)

Let’s solve these problems as follows:
* Instead of R(s), use R:(s), the reward we got this time.

* Instead of summing over P(s’|s, a), just set s” equal to whatever state
followed s this time.

* Instead of the true value of Q(s, a), use our current estimate,

Qt(S! a)'

TD learning

Qiocai(s,a) = Ri(s) +y max Qt(S,' a,)

areA(sr)

The problem with this solution is that it’s noisy. s’ was chosen
completely at random, so Q;,.4; (S, @) might be very far away from
Q(s,a). It might even be worse than Q;(s, a).

We can solve this problem by interpolating, using an interpolation
constanta that’'s 0 < a < 1:

Qt+1(S; (l) — (1 o a)Qt(SI Cl) T anocal (S, (l)

— Qt(SJ a) + a(Qlocal (S' (l) o Qt(S; Cl))

TD learning

This quantity, dQ.(s,a) = Q (s,a) — Q.(s,a), is called the “time difference.” The
V\r/1hole algorlxchm fs thereforel?:g Iled "t?megffgerence learning” (TD learning). It goes like
this:

1. When you reach state s, try some action a. Observe the state s’ that you end up in,
and the reward you receive, and then calculate Qlocal:

Qrocar(s,a) = Ry(s) +y max Qt(S’t a,)
areA(sr)

2. Calculate the time difference, and update:

th (S, Cl) = Qlocal (S) Cl) T Qt(S; Cl)
Qt+1(sl Cl) = Qt(sr Cl) + a(th(s, Cl))

Repeat.

Today: Q-Learning

» Off-policy vs. on-policy learning: TD vs. SARSA

* Batch learning

Exploration versus exploitation

e TD-learning has one gap, still: when you reach state s, how do you
choose an action?

* You might think that you just choose a* = rEnAa(X) Q; (s,a), but that
a S

has the following problem: what if Q; (s, a) is wrong?

* The solution is to use an exploration strategy. For example,

* Epsilon-first strategy: if there’s an action we’ve chosen less than eN times,
then choose that. Otherwise, choose a*.

* Epsilon-greedy strategy: with probability 1 — €, choose a*. With probability
€, choose an action uniformly at random.

TD learning

Putting it all together, here’s the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation policy,
m¢(S), to choose some action a = m;(s).

2. Observe the state s’ that you end up in, and the reward you receive, and then
calculate Qlocal:

Qiocai(s,a) = R¢(s) + ¥ max Qt(sl' a,)
areA(sr)

3. Calculate the time difference, and update:

Qt+1(S; Cl) = Qt(sl a) + a(Qlocal(sr Cl) R Qt(sl a))

Repeat.

TD learning

The action

you actually

Putting it all together, here’s the whole TD learning algorithm:
perform

1. When you reach state s, use your current exnleration versus exploitation policy,
¢(S), to choose some action a = m(s).

2. Observe the state s’ that you end up in, and the reward you receive, and then
calculate Qlocal:

Quocai(s,a) = Re(s) +y aIeA(sn Qe(s, a’) The action

3. Calculate the time difference, and update: TD-learning

assumes you
Qe+1(s,a) = Q¢(s,a) + a(Qlocal(s» a) — Q:(s, Cl)) will perform

Repeat.

TD learning is an off-policy learning algorithm

TD learning is called an off-policy learning algorithm because it
assumes an action

argmax Q,(s’,a")
areA(sr)

..which is different from the action dictated by your current
exploration versus exploitation policy

a' = m,(s")

Sometimes off-policy learning converges slowly, for example, because
the TD-learning update is not taking advantage of your exploration.

On-policy learning: SARSA

We can create an “on-policy learning” algorithm by deciding in advance which action (a’) we’ll
perform in state s’, and then using that action in the update equation:

1. Use your current exploration versus exploitation policy, ;(s), to choose some action

a = m¢(s).
2. Observe the state s’ that you end up in, and then use your current policy to choose
a' = m(s).

3. Calculate Qlocal and the update equation as:
Qiocai(s,a) = R(s) +¥Q(s', a’)

Qt+1(5; Cl) = Qt(sl Cl) + a(Qlocal(s: Cl) _ Qt(sl Cl))

4. Go to step 2.

On-policy learning: SARSA

This algorithm is called SARSA (state-action-reward-state-action)
because:

* In order to compute the TD-learning version of Q;,.4:, You only need
to know the tuple (s,a, R, s’):
Quocai(s,a) = Re(s) +y max Q.(s',a’)

areA(sr)

* In order to compute the SARSA version of Q;,.4;, YOU heed to have
already picked out (s,a,R,s’,a’):
Quocai(s,a) = R(s) +yQ (s, a’)

Today: Q-Learning

* Batch learning

Batch learning

Both TD learning and SARSA can be performed in batch mode:

1. Play the game several times, using a fixed policy m;(s).

2. Collect a training database of SARS or SARSA tuples:
D ={(s;,aq,R{,51), ..., (55, Ay, Ry, S7)

...0r...
D — {(S]_) al; R]J S:{l a:,l)) e (STU a’TU Rn’ S;U a;l)}

3. Compute the updates, {Qlocal,l» . Qlocal,l}r and update Q:
Qt+1(5; Cl) — Qt(si Cl) T a z (Qlocal,i _ Qt(si Cl))

Si,Ai=s,a

Batch learning

* Both TD-learning and SARSA work pretty well when you have a
discrete state space, s, and Q(s,a) is just a lookup table.

 When your state space is continuous-valued, then you have to use a
neural network to estimate Q(s,a). In that case, batch learning
becomes much more important, to help you learn smoothly.

e ... so I'll talk more about batch learning when | talk about deep Q-
learning, on Friday.

Conclusions: Q-learning

* Q(s,a) is the expected reward you get by choosing action a in state s. Its true value is
given by Bellman’s equation as:

Q(s,a) = R(s) + yz P(s'|s,a) max Q(s’,a)

areA(sr)

* If you don’t know P(s’|s,a) or R(s), you can learn Q(s, a) using TD-learning:
Qt+1(si Cl) — Qt(Si Cl) T a (Rt(s) T)4 a’rél/?()é’) Qt(S’; Cl,) _ Qt(sl Cl))

* TD-learning is an off-policy algorithm. SARSA is an example of an on-policy algorithm:
Qt+1(st Cl) — Qt(s' Cl) + a(Rt(S) +)/Qt(S’l Cl’) T Qt(SJ Cl))

* Batch learning collects a large number of SARS or SARSA tuples before each update:

Qe+1(s,a) = Q(s,a) + a Z (Qlocal,i — Q¢(s, Cl))

Si,aji=s,a

The robots of the world thank you for helping
them find blue diamonds.

Q+1(s,a) | 0.88

0.8710.810.92
= Q¢(s,a) + a Z (Qlocal,i — Q(s, a)) 3 0.68
S;i,aAi=s,a
0.66
4 -.69
) 0.68 0.42

NE 0.62 0.59
9 (00
0 ':vvl 53 0.660.58 | 0.61 <0.40
v I
[© 0 O 0.62 0.55

