
LANDMARK-BASED SPEECH RECOGNITION

Mark Hasegawa-Johnson

Lab 2

Issued: Monday, October 18, 2004 Optionally Due: Monday, October 25

Reading

• F. Perez-Cruz and O. Bousquet, “Kernel methods and their potential use in signal processing.” IEEE
Signal Processing Magazine, May 2004, pp. 57-65.

• Christopher J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Knowl-
edge Discovery and Data Mining, 2(2), 1998.

• Hynek Hermansky, “Perceptual linear predictive (PLP) analysis of speech,” Journal of the Acoustical
Society of America, 87(4):1738-1752, 1990.

Laboratory Exercise

Problem 2.1

Spectrograms and Problem Definition
The directory landmark waves contains a number of waveform files. Each waveform file is a 150ms

snippet, excised from a longer sentence, so that the midpoint is a landmark (a consonant closure or release,
for consonants that are nasals, stops, or fricatives). The waveforms are stored in subdirectories of the form
landmark_waves/${lm}, where ${lm} is a landmark label. A landmark label is either +${ph} or ${ph}+,
representing closures and releases, respectively, of the phoneme ${ph}.

Choose a distinctive feature of interest to you. You may choose one of the features given in Table 1,
or you may choose any other binary division of the phonemes that seems likely, to you, to result in good
classification performance. Use the wavread command in matlab1 to load several examples of [-feature]
landmark waveforms, and several examples of [+feature] waveforms, for your chosen feature.

Make sure that you have the voicebox toolkit in your matlab search path; you can set the search path
using the path command. Plot spectrograms of each waveform with a 500Hz analysis bandwidth, using the
voicebox spgrambw function, i.e., spgrambw(WAV,8000,500). Look at the [+feature] waveforms. Now look
at the [-feature] waveforms. Are there any consistent differences? Consider, in particular, the formant
frequencies, the burst spectrum of stops, and the frication spectrum of fricatives. If you are interested, there
is a table, in Appendix A, of the most widely attested acoustic correlates of distinctive features.

A complete linear-frequency spectrogram, as computed by spgrambw, is usually too much data for statis-
tical analysis. The data size can be reduced slightly, without too much loss of distinctive feature information,
by creating a mel-scale spectrogram, using the code snippet shown in fig. 2.1-1. Notice that relatively long
code snippets of this sort may be stored in text files called scripts and functions, so that you don’t need to
retype them over and over again: see the matlab tutorial for more information. Create mel-scale spectro-
grams of several [+feature] and several [-feature] waveforms, and plot the results using imagesc. Label
the abscissa in milliseconds, and the ordinate in Hertz, as shown in Fig. 2.1-1. Note: matlab 6.5.0 has a bug
that causes imagesc to ignore a nonlinear frequency axis, such as that in the vector FREQS. If your version
of matlab has this bug, use the last five lines of code in Fig. 2.1-1 to correctly label the frequency axis in
Hertz.

1Before you use any new matlab command, it is strongly recommended that you read the help page describing command
syntax: for example, you can type help wavread to read about wavread.



Lab 2 2

phone sonorant continuant lips blade body anterior strident voiced
b - - + - - + +
d - - - + - + +
g - - - - + - +
p - - + - - + -
t - - - + - + -
k - - - - + - -
m + - + - - +
n + - - + - +
ng + - - - + -
f - + + - - + - -
th - + - + - + - -
s - + - + - + + -
sh - + - + - - + -
v - + + - - + - +
dh - + - + - + - +
z - + - + - + + +
zh - + - + - - + +

Table 1: Distinctive feature notation for the consonants of English, based on the book Acoustic Phonetics by
Ken Stevens. Feature “strident” is defined only for fricatives, and feature “voiced” is undefined for nasals.
Features “blade” and “body” are redundant, but may be used to identify errors in the outputs of the other
classifiers.

% Create 32 mel-scale filterbanks, for use on a 512-point FFT
W=melbankm(32,512,8000);
% Cut WAV into 160-sample windows, overlapping by 120 samples
FRAMES=enframe(WAV,160,40);
% Compute magnitude STFT
MSTFT=abs(fft(FRAMES,512,2));
% Multiply MSTFT times W to create mel-scale spectrogram
MELGRAM=20*log10(W*MSTFT(:,1:257)’);
% Compute center frequencies, in Hertz, of each filter
FREQS=round(mel2frq([1:32]*frq2mel(4000)/33));
% Compute time alignments, in milliseconds, of each frame
TIMES=[-140:5:140];
% Create an image plot of the mel-scale spectrogram
imagesc(TIMES,FREQS,MELGRAM);
% Flip the frequency axis, so low frequency is at bottom
axis xy;
%% Alternate code -- necessary only if your version of matlab has
%% the bug that causes nonlinear Y-axis to fail
imagesc(TIMES,[1:32],MELGRAM); axis xy;
YTick=get(gca,’YTick’);
YTickLabel=’’;
for I=YTick, YTickLabel=strvcat(YTickLabel,sprintf(’%d’,FREQS(I))); end
set(gca,’YTickLabel’,YTickLabel);

Figure 2.1-1: Matlab code snippet: creating and plotting a mel-frequency spectrogram.



Lab 2 3

% List of +feature release landmarks
% -- change this to suit the feature that you’re using
% -- change this if you’re using closures instead of releases
PLUSPHONES={’b+’,’p+’,’m+’,’f+’,’v+’};
% Get directory listings of all directories given by PLUSPHONES
ROOTDIR=’/export/ws04ldmk/tutorial/landmark_waves/’;
for I=1:length(PLUSPHONES), PLUSDIRS{I}=dir([ROOTDIR, PLUSPHONES{I}]); end
% Load odd-numbered waves to TRAIN, even-numbered waves to TEST
for I=0:499,
% FILE_NUM and DIR_NUM are ratio and remainder of I/length(PLUSPHONES)
FILE_NUM=3+floor(I/length(PLUSPHONES));
DIR_NUM=1+rem(I,length(PLUSPHONES));
% Load the waveform file
WAV=wavread([ROOTDIR,PLUSPHONES{DIR_NUM},’/’,PLUSDIRS{DIR_NUM}(FILE_NUM).name]);
% Convert to mel-scale spectrogram, and load it to TRAIN
MSTFT=abs(fft(enframe(WAV,160,40),512,2));
MELGRAM=20*log10(W*MSTFT(:,1:257)’);
TRAIN(I+1,:) = MELGRAM(:)’;

end

Figure 2.2-1: Matlab code snippet: A method for loading 500 waveform files into the TRAIN array.

Look for the feature-specific acoustic correlates that you spotted when using a 2ms, 512-point spectro-
gram. Are the same acoustic distinctions still visible in the mel-scale spectrogram? If not, consider using a
mel filter bank with more bands, or use a shorter frame skip length.

Problem 2.2

Vectorizing the data
Vectorize one of the mel-scale spectrograms you created in part . In matlab, a matrix MELGRAM can be

vectorized using the notation svec=MELGRAM(:);. Use [NBANDS,NFRAMES]=size(MELGRAM) to compute the
size of the spectrogram matrix. Use size(svec) to compute the size of the vectorized spectrogram.

Unfold the vector back into a matrix. One way to do this, in matlab, is as follows: S=zeros(NBANDS,NFRAMES);
S(:)=svec;. Use imagesc to plot the unfolded spectrogram. Make sure that it is identical to the spectrogram
you started with.

Load about 1000 waveforms—500 [+feature] waveforms, 500 [-feature] waveforms, with roughly
equal representation from at least two different [+feature] phonemes and at least two different [-feature]
phonemes. You should either choose to focus on closure landmarks or release landmarks, but not both. One
method for efficiently loading 500 waveforms is shown in Fig. 2.2-1. Convert the waveforms into mel-scale
spectrograms, vectorize them, and stack them into a single matrix called something like TRAIN. From a
different list of 1000 waveforms (possibly the next 500 in PLUSDIRS and MINUSDIRS), load vectorized
mel-scale spectrograms into a matrix called TEST.

Normalize both data matrices to have zero mean and unit standard deviation, as shown here:

X_TRAIN=(TRAIN-repmat(mean(TRAIN),[1000 1]))./repmat(std(TRAIN),[1000 1]);

Verify that you can reconstruct a mel-scale spectrogram from any row of the normalized data matrices
X TRAIN and X TEST. Use subplot and imagesc to plot mel-scale spectrograms corresponding to the first
two [+feature] data vectors, and corresponding to the first two [-feature] data vectors. Always label the



Lab 2 4

abscissa in milliseconds, and the ordinate in Hertz, as shown in Fig. 2.1-1.

Problem 2.3

PCA
Use Sigma=cov(X TRAIN) to compute the global covariance matrix of the normalized training data. The

principal components are the eigenvectors of Σ, that is, they are the vectors ~vi such that, for some scalar di,

Σ~vi = di~vi (2.3-1)

In matlab, the eigenvectors can be efficiently computed using the eig function. [PCA V,PCA D]=eig(Sigma)
returns matrices such that PCA V(:,i)= ~vi, PCA D(i,i)= di, di > di−1, V −1 = V ′, and V ′ ∗ V = I where I
is the identity matrix.

Assume that the rows of X TRAIN are data vectors, and the columns of PCA V contain principal compo-
nents; then the rows of X TRAIN can be rotated into the new PCA space using PCA TRAIN=X TRAIN*PCA V.
Transforming the data in this way decorrelates the columns of PCA TRAIN: cov(PCA TRAIN) should equal the
matrix PCA D. In order to recover the original data, you can post-multiply by the inverse transform matrix:
PCA TRAIN*PCA V’ should equal X TRAIN.

Create the transformed data matrices PCA TRAIN and PCA TEST.
Use plot to create a two-dimensional scatter plot of a few of the transformed vectors, e.g.,

[M,K]=size(PCA_TRAIN);
hold off;
plot(PCA_TRAIN(1:100,K),PCA_TRAIN(1:100,K-1),’r+’);
hold on;
plot(PCA_TRAIN(501:600,K),PCA_TRAIN(501:600,K-1),’bo’);

Choose the two dimensions, from matrix PCA TRAIN, with the highest variance (i.e., the highest corresponding
elements of PCA D). Plot about 100 [+feature] vectors, and about 100 [-feature] vectors. Repeat with
the next two dimensions; you should have a total of two scatter plots, showing the four principal components
with largest variance.

Another way to interpret the principal components is as follows: the measurement PCA TRAIN(i,k)
measures the extent to which vector X TRAIN(i,:) is similar to the “spectrogram shape” represented by
vector PCA V(:,k). Thus if PCA D(K,K) is the largest variance, then PCA V(:,K) is the shape vector that
explains the most variance in the training data.

Unfold PCA V(:,K) into a mel-scale spectrogram, and plot it using imagesc. Label the abscissa in
milliseconds, and the ordinate in Hertz. What shape of spectrogram has the highest variance?

Repeat using all four of the principal components with highest variance.

Problem 2.4

LDA
In this section, you will compute three different types of feature projections, and associated classifiers,

using linear discriminant analysis.
The linear discriminant vector is based on the mean-difference vectors, ~v± = ~µ+ − ~µ−, where ~µ+ is the

mean of all data vectors in class [+feature], i.e., MU PLUS=mean(X TRAIN(1:500,:))’. The vector ~v± is
already a pretty good classifier: a particular data vector ~xm is considered to have the label [+feature] if
and only if

~x′m~v± > b± (2.4-2)



Lab 2 5

where, if ~xm has zero mean, and if there are equal numbers of positive and negative examples, the thresh-
old b± is guaranteed to be zero. Try this classifier: compute the mean difference vector V MUDIFF, and
transform all of your training and test data vectors to create vectors of scalar discriminant functions
MUDIFF TRAIN=X TRAIN*V MUDIFF and MUDIFF TEST. Plot histograms of the [+feature] and [-feature]
tokens of MUDIFF TRAIN, using code such as

BINS=min(MUDIFF_TRAIN)+[0:0.05:1]*(max(MUDIFF_TRAIN)-min(MUDIFF_TRAIN));
NPLUS=hist(MUDIFF_TRAIN(1:500),BINS);
NMINUS=hist(MUDIFF_TRAIN(501:600),BINS);
plot(BINS,NPLUS,’r’,BINS,NMINUS,’b’);

Now do the same for MUDIFF TEST.
Compute the classification error rate of this classifier on the training corpus. Assuming that the classifi-

cation threshold is zero, the number of classification errors is given by the histogram as

ERR=sum(NPLUS(BINS>0))+sum(NMINUS(BINS<=0)));

What is the classification error rate of this classifier on the training corpus? On the test corpus? Note that
if the training corpus error is greater than 50%, you should probably swap the less-than and greater-than
signs.

Convert the vector ~v± into a spectrogram, and plot it using imagesc. What time-frequency pixels are
more heavily associated with [+feature] tokens? Which pixels are more heavily associated with [-feature]
tokens?

The classical two-class linear discriminant transform vector is

V_LDA = inv(Sigma)*V_MUDIFF;

where Σ is the global covariance matrix (the covariance of all tokens—the same matrix that you used to com-
pute PCA). Compute ~vLDA. Transform the data, to create discriminant vectors LDA TRAIN=X TRAIN*V LDA
and LDA TEST. Plot histograms of the [+feature] and [-feature] tokens of LDA TRAIN. Do the same with
LDA TEST. What is the training corpus error rate of this classifier? What is the test corpus error rate? Why
are they different? Convert ~vLDA into a spectrogram matrix, and plot it using imagesc. What happened?

Quite probably, you have just observed what happens when a classifier gets over-trained. The only way to
avoid over-training a classifier is by controlling its Vapnik-Chervonenkis (VC) dimension. The classical way of
controlling the VC dimension of a classifier is by reducing the number of trainable parameters. Try reducing
the dimensionality of your LDA classifier using principal components analysis, as follows: (1) transform the
training data using PCA, (2) extract the 25 dimensions (or so) with highest variance, (3) perform a 25-
dimensional LDA on the extracted data, resulting in a short-LDA transform vector ~vSLDA, (4) use ~vSLDA

to transform the test data, (5) compute histograms of the training and test data discriminants. What is the
training corpus error rate? What is the test corpus error rate? You should find that SLDA gives much lower
generalization error (defined as the difference between test corpus error and training corpus error) than does
classical LDA. Apply inverse-PCA to ~vSLDA in order to get back a full spectrogram matrix, and plot it using
imagesc. What time-frequency pixels are attributed, by the SLDA classifier, to [+feature]? What pixels
are attributed to [-feature]?

Problem 2.5

SVM
In this section, you will train a linear support vector machine.
A linear support vector machine is a classifier vector, ~vSV M , created as a weighted sum of all of the tokens

in the training database. Let X be an M ×K matrix whose rows are the training vectors ~x′m, 1 ≤ m ≤ M .



Lab 2 6

% Create the training corpus label vector
Y = [repmat(-1,[1 500]), repmat(1,[1 500])]’;
% Create the format vector for writing SVM data
FMT=[’%f’,repmat(’ %d:%f’,[1 size(X_TRAIN,2)]), ’\n’];
% Open an output file, and write out data vectors using column-order fprintf
fid=fopen(’data1.txt’,’w’);
for I=1:1000,
fprintf(fid,FMT, Y(I), [1:size(X_TRAIN,2); X_TRAIN(I,:)]);

end
fclose(fid);
% Read input from support_vectors.txt, delimited by colon or space
A = textread(’support_vectors.txt,’’,’whitespace’,’ :\b\t’);
alpha=A(:,1);
support_vectors=A(:,3:2:size(A,2));

Figure 2.5-1: Matlab code snippet: writing data vectors and reading the classifier definition in svm learn
data format. Note: use the tail program or a text editor get rid of the first eleven lines of the SVM input
file before using this code.

Let ~y = [y1, . . . , yM ]′ be a vector whose element ym is the correct label of vector ~xm, i.e. either ym = 1 or
ym = −1. Then

~vSV M = X~α (2.5-3)

where ~α is an M -vector of weights, computed by minimizing

E = arg min ~α′(XX ′)~α− ~α′~y (2.5-4)

subject to the following two constraints: first, ~α must be a zero-mean vector, i.e.,∑
m

αm = 0 (2.5-5)

and second, each weight αk must have the same sign as the corresponding label, i.e.

0 ≤ ykαk ≤ C (2.5-6)

where C is an arbitrary parameter specifying the degree to which the algorithm should pay attention to
outliers (data vectors that are very far on the wrong side of the classification boundary). Equation 2.5-4
is the key criterion to be minimized. Notice that it has two terms. The first term is related to the VC
dimension of the classifier; the second term is related to the training corpus error. By minimizing the sum
of these two terms, it’s possible to simultaneously control the training corpus error and the generalization
error of the classifier.

The problem of minimizing Eq. 2.5-4, subject to the constraints in Eqs. 2.5-5 and Eq. 2.5-6, is an example
of a “quadratic programming” problem, or QP. Programming QP yourself in matlab is possible but very
slow; it is easier to use an existing efficient QP solver. An example of an efficient QP-solving program is the
svm learn program, available in /apps/svmlight. In order to use svm learn, you need to output your data
vectors in a text file with the following format:

label1 index1:val1 index2:val2 ...

Sample code snippets for reading and writing data in SVM-file format are given in Fig 2.5-1.



Lab 2 7

LABELS=cell(100,1);
for I=1:100,
while(length(LABELS{I})<1),
soundsc(SHUFFLED_WAVS(:,I));
LABELS{I}=input(sprintf(’Enter a phoneme (or hit return to hear wave %d again): ’,I),’s’);

end
end

Figure 2.6-1: Matlab code snippet: Play each waveform, then ask for a phoneme label. If user types a
phoneme, enter it in LABELS, and proceed to the next waveform; if not, play the same waveform over again.

Output your entire 2000-token training dataset in the format required by svm learn. Use svm learn
data1.txt linear.svm to train a linear SVM from data1.txt, and store the result in linear.svm. After
training, the first eleven lines of linear.svm will contain classifier statistics, including the classification
threshold. Each line after the tenth contains one scalar weight αm, followed by all of the elements of the
corresponding support vector ~xm, stored in “index:value” format. Use a text editor, or the tail program
in unix, to clip the first eleven lines from this file, and store the rest in a file support vectors.txt. Read
support vectors.txt (e.g., using the code snippet in 2.5-1). Construct the SVM discriminant vector
~vSV M , as shown in Eq 2.5-3. Transform the training and test data in order to create discriminant vectors
SVM TRAIN=X TRAIN*V SVM and SVM TEST. Plot histograms of both [+feature] and [-feature] tokens, for
both the training and test data. What is the training corpus error rate (be careful to use the correct
classification threshold, given on line 11 of the SVM file, don’t just use zero as a threshold)? What is the
test corpus error rate? Plot ~vSV M as a spectrogram. What time-frequency pixels are associated with each
class?

If you’re interested, try using svm learn to learn a nonlinear (RBF) support vector machine. Try using
svm classify to classify your test data with the new classifier. Can you get classification results that are
better than those of the linear classifier?

Problem 2.6

Human Speech Recognition Performance
Load about 50 [+feature] waveforms, and about 50 [-feature] waveforms, using code similar to that

given in Fig. 2.2-1, but without converting the waveforms into mel-frequency spectrograms (i.e., keep the
data as waveforms). Randomly reshuffle the 100 waveforms. Keep a record of the shuffling order, but do not
look at it yet. For example,

[foo, SORT_ORDER]=sort(rand([1 100]));
for tok_index=1:100,
SHUFFLED_WAVS(:,tok_index)=WAVEFORMS(:,SORT_ORDER(tok_index));

end

Put on a pair of headphones, in order to make sure that you can clearly hear the audio. Play each of the
shuffled waveforms, in order (you may find it convenient to have matlab step through them for you, using
the code in Fig. 2.6-1). Listen to each waveform as many times as you like. Write down the phoneme label
that you think you hear.

Now, look at the SORT ORDER matrix, and use it to score your speech perception results. Compute your
classification error rate for the binary distinctive feature that you’ve been investigating in previous parts of
this lab. Is your brain a better phoneme classifier than the SVM? How about the LDA?

If your error rate is non-zero, create a confusion matrix. Does your confusion matrix indicate that some



Lab 2 8

manners or places of articulation are more confusable than others? Is there a bias in favor of certain manners
or places of articulation?

Problem 2.7

Conclusion
This section ends with some topics for discussion. You are not required to answer these questions, but

you should think about them.
Under what circumstances do classical statistical methods, such as linear discriminant analysis, fail?

Why is it possible for regularized learners, such as the support vector machine, to succeed under similar
circumstances?

A mixture Gaussian classifier is a much better classifier than LDA, but it is susceptible to over-training
in exactly the same way that LDA is susceptible to over-training. Nevertheless, for the past 20 years,
automatic speech recognition systems have used mixture Gaussian classifiers, and have only occasionally run
into over-training problems. Why?

Did the human listener achieve zero error on the task of distinctive feature classification in this lab? If
not, is there anything that could be done (to the data, or to the listener) to improve performance?

Did any of the automatic classifiers achieve zero error on this task? If not, what could be done to improve
performance?

All experiments in this lab involved binary classification of fixed-length speech waveforms. How can the
methods in this lab be extended to cope with variable-length waveforms and variable-length label strings?

Appendix A Acoustic Correlates of Distinctive Features

“Acoustic correlates” of a distinctive feature are acoustic measurements that can be used to determine
whether a phoneme is [+feature] or [-feature]. Phoneticians are divided into two camps: (1) those
who believe that each distinctive feature is primarily cued by pinpoint measurements at particular times,
in particular frequency bands (Blumstein and Stevens, JASA, 1979), and (2) those who believe that every
possible acoustic measurement carries information about every possible distinctive feature (Kewley-Port,
JASA, 1982). The engineering response to this debate is, as always, to conclude that both camps are
correct: every measurement informs us about almost every distinctive feature, but some measurements are
more informative than others (in very precise terms: some measurements have higher mutual information
with the target distinctive feature than others).

Table 1 lists some widely attested acoustic correlates. With some practice, you can use this table to teach
yourself spectrogram reading. These acoustic correlates can also be useful in automatic speech recognition,
but they should usually augment the mel-scale spectral observation vector, not replace it. In this table, a
“formant” is a resonant frequency of the vocal tract; it shows up in the spectrogram as a thick fuzzy bar, like
a horizontal caterpillar. During most vowels, 250 ≤ F1 ≤ 1000Hz, 900 ≤ F2 ≤ 2400Hz, 2200 ≤ F3 ≤ 3000Hz;
F3 may or may not be observable on spectrograms computed from telephone speech. The “formant locus”
is the frequency that the formant would take right at the instant of consonant closure or release, if you
could actually measure the formant at that time—often it is impossible to actually measure the formant at
that time, so you must interpolate the formant backward in time from a following vowel, or forward in time
from a preceding vowel. All English consonants have an F1 locus of about 200Hz. The F2 and F3 loci are
variable but useful cues for place of articulation (lips vs. blade vs. body). Other place cues include stop
burst spectrum (the spectrum of the noise that occurs at t = 0) and frication spectrum (the spectrum of
noise during the closed portion of a fricative). Stop consonant voicing, in English, is primarily cued by voice
onset time (VOT), the time delay between the burst and the onset of vowel voicing.



Lab 2 9

FEATURE CONTEXT INFORMATIVE ACOUSTIC CORRELATES
sonorant all strong periodic voicing, with a total energy that doesn’t change

much from frame to frame during consonant closure, and with a
spectral peak during closure between 250Hz and 1000Hz

continuant all high-frequency energy during closure (above 1000Hz) is not more
than 30dB below the low-frequency energy during closure, and
high-frequency energy is therefore visible in the spectrogram

lips any F2 and F3 formant loci are lower than the formant frequencies of
any preceding or following vowel, thus formants rise into a following
vowel, fall from a preceding vowel

fricative frication spectrum (during closure) has very low amplitude, with
roughly equal energy at all frequencies above 1000Hz

stop release burst spectrum (at t=0ms) has very low amplitude, with roughly
equal energy at all frequencies above 1000Hz

stop release VOT is shorter than predicted by voicing features
blade any formant loci are 1600 < F2 < 2000Hz, F3 ≈ 3000Hz

stop release burst spectrum is low amplitude and highpass, with more energy
at high frequencies (above 2500Hz) than at low frequencies (below
2000Hz)

fricative frication spectrum is low-amplitude and highpass
body any formant loci may be at any frequency at all, but F2 locus and F3

locus are always very close together
stop release burst spectrum shows a compact peak (on the spectrogram, a lump

of visible energy) between 1000Hz and 3500Hz
fricative frication spectrum shows a compact peak

anterior any [-anterior] phones have F2 and F3 formant loci close to-
gether, [+anterior] phones have F2 and F3 loci far apart

stop or fricative [-anterior] phones have a compact frication or burst peak be-
tween 1000Hz and 3500Hz, [+anterior] phones have a diffuse
spectrum with no obvious peak

strident fricative high-frequency energy (above 3000Hz) is as strong during the con-
sonant as it is during following and preceding vowels

voiced any [+voiced] consonants are shorter than [-voiced] consonants
any closure all stops and fricatives (both voiced and unvoiced) tend to have a

“voice bar:” a few extra frames, after oral closure, with periodic
voiced energy continuing in the very-low-frequency range (below
300Hz). Voiced stops and fricatives tend to have a longer voice bar
than unvoiced ones

fricative release voiced fricatives, but not stops, may have a voice bar for a few
frames before release

stop release unvoiced stops have a VOT longer than 25ms

Table 1: Some of the most widely attested acoustic correlates of distinctive features.


