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ABSTRACT 

 

Speech is a natural mode of communication for human beings and speech recognition is 

an application that enables the interaction between human and machine via voice.  As the 

cost of software and hardware needed to do recognition decreases, automatic speech 

recognition (ASR) has entered the consumer product mainstream.  A particularly 

interesting application is wireless speech recognition, which is the integration of ASR 

technology into wireless applications.  Utilizing an ASR system, people can interact via 

their cell phone using voice, thereby freeing their hands and eyes for other tasks.  One 

aspect of speech recognition useful for wireless applications is digit recognition.  In this 

paper, we perform speaker–independent isolated digit recognition using PLP (perceptual 

linear predictive) analysis and a DTW (dynamic time warping) algorithm.  The effect of 

quantization of speech recognition features on recognition accuracy is examined to 

determine the lowest bit rate possible while maintaining high quality performance.   
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1. INTRODUCTION 

 

Automatic speech recognition (ASR) has been a subject of research since the 1940s.  

Many people have envisioned the interaction between human and machine using voice, 

as can be seen in many science-fiction movies.  Speech recognition and speech synthesis 

are two main areas of voice processing that enable the interaction between human and 

machine.   In the early days, voice processing technologies such as speech recognition 

could only be found in research laboratories, but now these technologies have found their 

way into a variety of commercial applications.   

 

Early ASR systems could only do isolated digit recognition for a single speaker [1].  

Later generations of ASR were able to do much more complicated tasks such as 

connected word recognition.  The most recent ASR system, which is available 

commercially, is able to recognize continuous speech with proper training.  The 

popularity of ASR nowadays is fueled by several factors such as the advances in digital 

signal processing technology, the substantial decrease of computation cost and memory, 

and the exponential increase of computing power found in both general-purpose and 

special-purpose processors.  

 

These days we can see that speech recognition has penetrated many areas in everyday 

life.  People can go to computer stores and buy a high-performance dictation system, 

which allows users to use voice as input instead of a keyboard.  Some companies have 

started to use speech recognition technology to enable customers to obtain weather 

information, stock quotes, business news, sports news, traffic reports, and local restaurant 

guides.  Telecommunications, a field that enjoys remarkable growth with the booming of 

the wireless and Internet industries, has also helped propel speech recognition technology 

into consumer applications. 

 

One application of ASR in the wireless industry is to provide hands-free, eyes-free 

interaction between user and cellular telephone via voice.  This application is particularly 

useful when people are driving or doing other tasks that require using the hands and eyes.  
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Some countries even prohibit the use of cellular phones, a prohibition that will no longer 

be necessary with voice-activated dialing.  Cellular phones can also be programmed to 

store personal phone directories and to perform advanced tasks such as caller ID, call 

waiting, last number dialed, and call forwarding.  Programming a cell phone via speech 

commands gives a more efficient and smoother interaction between user and cell phone 

than using a tiny keypad in the cell phone.  Hence, as the use of cellular phone becomes 

more widespread, wireless speech recognition emerges as a research field of interest to 

industry and academe. 
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2. BACKGROUND 

 

2.1 Previous Work 

 

As mentioned previously, the tremendous growth in the wireless communication industry 

is one of the factors that promotes the realization of speech recognition in digital 

communication networks.  More and more people in industry and academe are now doing 

research toward the design of a high quality wireless speech recognition system.  Kim and 

Cox [2] state that the research work on a front-end design for wireless speech recognition 

can be classified into three categories.  The first category is shown in Figure 1.  This 

system uses the synthesized speech from a speech decoder as an input to an ASR system.    

 

Figure 1: A conventional approach in which the output of the speech decoder serves as the 
input to the ASR system (after Kim and Cox [2]). 
 

Works on the above system have been reported in [2]-[7] for IS-641, GSM (Global System 

for Mobile Communications), CELP (code-excited linear prediction), LD-CELP (low 

delay CELP), and QCELP (Qualcomm CELP) environments.  Depending on the 

vocabulary size to be recognized and the adversity condition of the test utterance, the word 

error rate (WER) ranges from 0.5% to 7% and the word recognition accuracy (WRA) 

ranges from 83% to 99%.  WER and WRA are two metrics commonly used to measure 

speech recognition performance.  It has been shown that the performance of this system is 

lower than that for wireline ASR [2]-[6].  Wireline ASR is an ASR that is trained and 

tested using standard wireline quality speech, which is speech sampled at 8 kHz and coded 

using µ-law or A-law companding.  Kim and Cox show that, given the same database and 

condition, the word accuracy of wireline ASR is 96.17%, whereas the word accuracy of the 

above approach is 94.75%.  Experiments by Choi et al. [3] also show a similar trend in 

which recognition rate of the above approach is 3% less than that of wireline ASR.  The 
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degradation in performance is due to the spectral distortion introduced by speech coder and 

decoder.    

 

In the second approach, a front-end processor encodes the recognition feature instead of 

original speech.  Speech recognition parameters, the outputs of the encoder, are quantized 

and transmitted as illustrated in Figure 2.   

 
Figure 2: The speech recognition feature is encoded by the front-end processor, and the 
input to the ASR system is the decoded recognition feature (after Kim and Cox [2]). 
 
This scheme yields recognition accuracy comparable to that of wireline ASR, as reported 

by Digalakis et al. [8].  Using MFCC (mel frequency-warped cepstral coefficients) as a 

parametric representation of the speech, they show that the required bit rate to achieve the 

recognition performance close to that of wireline ASR is 2000 bits per second.  They 

reported a WER of 6.55% and 6.63% for wireline ASR and second category ASR, 

respectively.  However, because only speech recognition parameters are transmitted, much 

information contained in the original speech is lost.  Consequently, the synthesized speech 

does not have high quality, whereas the first system is able to generate high quality speech 

in addition to having good speech recognition performance.  The advantage of the second 

approach is that a lower bit rate can be achieved by only encoding the recognition features.  

Another similar study using this scheme is reported by Tsakalidis et al. [9]. 

 

Figure 3: The speech recognition feature is extracted from the bitstream of the speech     
     coder (after Kim and Cox [2]).  
 



 5 
 

The third system, shown in Figure 3, extracts speech recognition parameters from the 

bitstream of a speech coder.  According to Kim and Cox, this approach is able to generate 

high quality speech and has better recognition accuracy than the first category system.  

Their experiments yield recognition accuracy of 95.16% and 95.81% for category one and 

category three systems, respectively.  Experiments by Choi et al. [10] confirm this view in 

which the recognition rate of the first and third systems are 82.5% and 84.1%, respectively.  

However, the recognition accuracy of this approach is still lower than that of wireline 

ASR, which is also shown in [2] and [10].  Table 1 on page 6 shows the results of 

experiments using the three systems. 

 

Most of the recent research in speech recognition employs a recognition algorithm called 

the hidden Markov model (HMM).  In this work, an older technique, dynamic time 

warping (DTW), is used for speaker-independent isolated digit recognition.  A closely 

related work using this algorithm was done by Sakoe and Chiba [12], who described an 

optimum dynamic programming (DP) based time-normalization algorithm for spoken word 

recognition.  Another important work using dynamic time warping algorithm is that of 

Rabiner et al. [13]. 

 

In this work, perceptual linear predictive (PLP) coefficients are used as parametric 

representations of acoustic data.  PLP analysis was first proposed by Hermansky [14], and 

he also performed speaker-independent isolated digit ASR experiments using the DTW 

algorithm.  Hermansky showed that PLP is a better representation of the linguistic 

information in speech than is conventional LP (linear predictive) analysis.  In addition, he 

reported that a PLP-based recognition system consistently performed better than an LP-

based system by comparing WRA of ASR systems using 14th-order LP analysis and 5th-

order PLP analysis.  For example, with two templates per word, a PLP-based system’s 

accuracy is 92%, whereas an LP-based system’s accuracy is 90%.   
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Table 1: The performance of different categories of recognition system. 

Reference Class1 Acoustic 
features2 

 Mode3 Coder4 Algorithm5 Vocabulary Metric (%) 

[2] WL LPCC CW - GMHMM Digits WRA = 96.17 
[2] 1 LPCC CW IS-641 GMHMM Digits WRA = 95.16 
[2] 3 LPCC CW IS-641 GMHMM Digits  WRA = 95.81 
[2] 3 LPCC,  

ACG,  
FCG 

CW IS-641 GMHMM Digits  WRA = 95.96 

[3] WL MFCC CW QCELP DHMM Digits WRA = 87.00 
[3] 1 MFCC CW QCELP DHMM Digits  WRA = 83.60 
[4] WL MFCC IW - GMHMM Digits WRA = 99.66 
[4] 1 MFCC IW FR-GSM GMHMM Digits  WRA = 99.53 
[4] 3 MFCC IW FR-GSM GMHMM Digits  WRA = 99.25 
[5] WL RN-LFCC IW, 

CW 
- GMHMM 43 words,  

26 letters, 
and digits 

WRA =  
90.00-99.50 

[5] 1 RN-LFCC IW, 
CW 

FR-GSM, 
HR-GSM 

GMHMM 43 words,  
26 letters, 
and digits  

 WRA =  
80.00-99.30 

[6] WL LPCC IW - GMHMM 23 words  WRA = 96.61 
[6] 1 LPCC IW CELP,  

LD-CELP, 
FR-GSM 

GMHMM 23 words WRA = 
 91.95-94.52 

[7] 1 MFCC NA GSM PHIL90 Digits and 26 
words 

WER = 0.5-5.0 

[8] WL MFCC CS - GMHMM ATIS6  WER = 6.63 
[8] 2 MFCC CS - GMHMM ATIS  WER = 6.63 
[9] 2 MFCC CS - DMHMM ATIS WER =  

6.25-6.60 
[10] WL LSP IW QCELP DHMM 26 words WRA = 90.20 
[10] 1 LSP IW QCELP DHMM 26 words WRA = 82.50 
[10] 3 LSP IW QCELP DHMM 26 words WRA = 84.10 
[10] WL MPCEP IW QCELP DHMM 26 words WRA = 94.70 
[10] 1 MPCEP IW QCELP DHMM 26 words WRA = 89.80 
[10] 3 MPCEP IW QCELP DHMM 26 words WRA = 90.60 

 

1Classes 1, 2, 3 correspond to the systems in Figure 1, 2, and 3 respectively.  Class WL corresponds to 
wireline ASR.  2LPCC = LPC cepstral coefficients, ACG = adaptive codebook gain, FCG = fixed codebook 
gain, MFCC = mel-frequency cepstrum coefficients, RN-LFCC = root-normalized linear frequency cepstrum 
coefficients, LSP = line spectral pairs, MPCEP = mel-scale pseudo-cepstrum coefficients.  3Mode 
corresponds to the speaking style, which is either IW (isolated words), CW (connected words), CS 
(continuous speech), or NA (data not available).  4Speech coder is one of the following: IS-641 is a 7.4 kb/s 
ACELP (algebraic CELP) coder, QCELP = Qualcomm CELP (13 kb/s), FR-GSM = full rate GSM (13 kb/s), 
HR-GSM = half rate GSM (5.6 kb/s), LD-CELP = low delay CELP (16 kb/s).  5Algorithm corresponds to 
recognition algorithm.  Algorithm is one of the following: DHMM = discrete-density HMM, DMHMM = 
discrete-mixture HMM, GMHMM = Gaussian-mixture HMM.  PHIL90 is a speech recognition system 
developed at France Telecom/CNET (Centre National des Telecommunications).  6Refer to [11] for more 
information on the ATIS (air travel information system) domain. 
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2.2 Problem Statement 

 

Speech recognition is computationally expensive, requiring a large amount of memory and 

processing power.  Implementing a complete speech recognition algorithm in a cell phone 

would put a big burden on the cell phone’s hardware and software requirements, which 

could cause the cost of cell phones to increase dramatically.  To overcome this problem, 

the speech recognition system is distributed over the cell phone and base station.  In the 

cellular phone, the front-end processor calculates, quantizes, and encodes the speech 

recognition feature.  Then the encoded coefficients are transmitted to the base station, and 

the decoder extracts the coefficients.  These decoded coefficients, which are PLP 

coefficients, are converted into cepstral coefficients, and the speech recognition algorithm 

(dynamic time warping) is run using cepstral coefficients as input. 

 

The focus of this work is speaker-independent isolated digit recognition, with 11 English 

digits (zero to nine and the word “oh”) serving as valid inputs.  First, speech recognition is 

implemented without any quantization, as shown in Figure 4, which means that the DTW 

recognizer has a perfect input (no distortion).  

 

Figure 4: ASR system without quantization 

 

Then we examine the quantization effect on the speech recognition performance.  PLP 

coefficients are converted into LSP (line spectral pairs) before being quantized using 

vector quantization.  Codebooks, designed using the LBG algorithm [15], are varied to 

explore the trade-off between bit rate and performance, as the performance tends to be 

lower while the bit rate is decreased.  Furthermore, the number of templates per word is 

also varied.  
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Next, the speech features are down-sampled by a factor of two to lower the transmission 

bit rate, and the system implements linear interpolation upon down-sampled speech 

features before running recognition algorithm.  Then the recognition accuracy is calculated 

to see how the performance is affected.  The last system implements similar system 

without linear interpolation.  It is expected that a down-sampled system with linear 

interpolation will outperform its counterpart without interpolation.   
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3. SYSTEM DESCRIPTION 

 

3.1 Preprocessing 

 
Input speech waveforms are taken from the TIDIGITS database (Linguistic Data 

Consortium, 1990).  The input speech data has sampling rate of 20 kHz, and telephone 

speech is normally sampled at 8 kHz.  Consequently, the sampling rate has to be changed 

from 20 kHz to 8 kHz.  This is done by up-sampling by a factor of two and down-

sampling by a factor of five.  To avoid aliasing, a low-pass FIR filter with cutoff π/5 and 

order 30 is applied to eliminate frequency contents higher than 4 kHz (Nyquist rate).  

Figure 5 shows the impulse response and frequency response of the filter, which was 

designed using a Hamming window. 

          (a)       (b) 

Figure 5:  A 30th-order low-pass FIR filter: (a) impulse response, (b) magnitude response 
and phase response.  
 

An important problem in speech recognition is to determine where the speech begins and 

ends.  This is known as the speech endpoint detection problem.  Wilpon et al. [16] 

showed in their multispeaker digit recognition experiment that even a slight error in 

endpoint detection could result in significant degradation in recognition accuracy.  For 
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example, in their experiment, recognition accuracy decreases by 10% because the 

endpoints are inaccurately identified by approximately 120 ms.  Therefore, a good 

endpoint detection algorithm is necessary in the speech recognition system.  The endpoint 

detection algorithm used in this work was proposed by Rabiner et al. [17].  The algorithm 

uses energy and zero crossing rate measurements to determine beginning and end points.  

However, to speed up the running time, only speech energy is used to detect the 

endpoints in this work.  Because the speech data is recorded in a high signal-to-noise 

ratio acoustic environment, the detection algorithm is expected to work well for most 

cases.  During the experiment, incorrect endpoints are corrected manually to better 

investigate the recognition accuracy.   

 

The speech energy E(n) is computed by summing the magnitudes of 10 ms of speech 

centered on the measurement interval.  If we denote the speech signal by x(n), then 

 

∑
−=

+=
40

40

)()(
i
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To detect the endpoint location, first we need to know the statistics of the background 

silence.  The average energy of the background silence is computed by averaging the 

energy during the first 100 ms of the signal.  Computation of the energy of the 

background silence assumes that there is no speech during the first 100 ms.  Second, the 

peak energy of the entire speech file is computed by finding the maximum of E(n).  Let 

IMX be the peak energy and IMN be the silence energy; then two thresholds, ITL and 

ITU, are calculated based on the following equations: 
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I1 = 0.03*(IMX-IMN)+ IMN 

  I2 = 4*IMN 

 ITL = MIN (I1, I2) 

 ITU = 5*ITL 

 

To find the beginning point, the algorithm starts by locating the point where the signal 

energy exceeds the upper threshold ITU.  From this point, the algorithm searches 

backwards to find a point at which the energy falls below the lower threshold ITL for the  

first time.  The ending point is found in a similar way.  Figure 6 shows the energy plot of 

word “three” and the result of the endpoint detection algorithm, respectively.  

    (a)                                                                       (b) 

Figure 6: Outputs of endpoint detection algorithm: (a) Energy plot of speech utterance 
“three” along with the beginning and the ending marks (shown in dotted lines).  (b) 
The original speech signal is plotted with the beginning and the ending marks. 
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3.2 Perceptual Linear Predictive (PLP) Analysis 

 

3.2.1 Overview 

 

PLP analysis was proposed by Hynek Hermansky in 1989.  PLP analysis is similar to 

linear predictive coding (LPC), which is a widely known technique in speech coding, 

except the PLP technique also uses three concepts from the psychophysics of hearing.  

These three concepts are the critical-band spectral resolution, equal-loudness curve, and 

intensity-loudness power law.  Figure 7 below shows necessary steps to implement the 

PLP method. 

 
Figure 7:  Block diagram of PLP analysis (after Hermansky [14]). 

 

Both LPC and PLP use the autoregressive all-pole model to estimate the short-term 

power spectrum of speech.  However, as pointed out by Hermansky, the LPC all-pole 

model is not consistent with human auditory perception because it does not consider the 

nonuniform frequency resolution and intensity resolution of hearing.  PLP alleviates this 
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problem by applying the all-pole model to the auditory spectrum.  The auditory spectrum 

is designed to be an estimate of the mean rate of firing of auditory nerve fibers.  The all-

pole model encodes the frequencies and the bandwidths of the two most important peaks 

in the auditory spectrum, as suggested by the vowel perception model of Chistovich [18].   

 

3.2.2 Spectral analysis 

 

After the sampling rate conversion described in Section 3.1, the filtered speech data is 

blocked into overlapping frames of 240 samples (30 ms).  The amount of overlap is 160 

samples (20 ms); in other words, adjacent frames are separated by 80 samples (10 ms).  

Let s(n) be the filtered speech data, xk(n) be the kth frame of speech, and L be the total 

number of frames.  Then 

   

xk(n) = s(80k+n), n=0,1,…,239;  k = 0,1,…,L-1 

 

A 30-ms asymmetric window is applied to each frame to minimize the signal 

discontinuities at the beginning and end of each frame by tapering the signal to zero or 

near zero.  The first half of the window is half of a Hamming window, and the second 

half is a quarter period of a cosine function.  If we denote the window by w(n), then  

 

  
  n=0,…,199, 

 
  n=200,…,239 

 
 

This asymmetrical window was chosen because it is the window used by the CS-ACELP 

(conjugate-structure algebraic code-excited linear predictive) speech coder for LP 

analysis [19]. 
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Figure 8: Asymmetric window with 30 ms duration. 
 

Figure 8 shows the plot of this window.  The asymmetrical shape is intended to reduce 

the look-ahead without compromising quality.   Now the windowed frame becomes 

 

sk(n) = xk(n)w(n), n = 0,1,…,239;  k = 0,1,…,L-1 

 

Next, a 256-point fast Fourier transform (FFT) is used to transform 240 speech samples 

in every frame into the frequency domain by padding 16 zero-valued samples.  Let Sk(ω) 

be the Fourier transform of  sk(n). Then the short-term speech spectrum is obtained by 

squaring the real and imaginary components of Sk(ω) and adding them, i.e., 

 

P(ω) = Re[Sk(ω)]2+Im[Sk(ω)]2 

 

where ω is the angular frequency in rad/s.  Note that the power spectrum is essentially the 

squared-magnitude of complex number Sk(ω). 

 

3.2.3 Critical band analysis 

 

A critical band is the smallest bandwidth such that the loudness of a sound is perceived to 

be different.  At a constant sound pressure, several tones lying within a critical bandwidth 
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give the same level of perceived loudness as a single pure tone lying at the center of the 

band whose intensity equals the sum of the component tone intensities.  If tones are  

separated by more than a critical bandwidth, their combination is perceived to become 

louder.  The frequency scale in which a critical bandwidth is always one unit is called 

Bark.  The power spectrum P(ω) is warped into Bark frequency Ω using the equation 

 

Ω(ω) = 6 ln{ω/1200π + [(ω/1200π)2+1]0.5}  

 

The Bark-scaled power spectrum is convolved with the power spectrum of the critical 

band masking curve Ψ(Ω).  This step simulates the frequency resolution of the ear in 

which Ψ(Ω) integrates all the loudness of the tones lying within a critical bandwidth into 

one loudness of equivalent single tone.  The critical band curve is given by 

 

Ψ(Ω) =   0  for  Ω < -1.3,  

102.5(Ω+0.5) for  –1.3≤Ω≤-0.5, 

1  for  -0.5<Ω<0.5, 

10-(Ω - 0.5) for  0.5≤Ω≤2.5, 

0  for  Ω>2.5 

 

The convolution of P(ω) with masking curve Ψ(Ω) in effect reduces the spectral 

resolution of P(ω).  Then the output of convolution is down-sampled by sampling it in 1-

Bark intervals at integer points (1,…,15) to cover the frequency from 0 to 15.575 Bark 

(0-4 kHz). 

 

3.2.4 Equal-loudness preemphasis 

 

The ear does not hear all frequencies with equal sensitivity, i.e., the perceived loudness is 

different at different frequencies.  The human ear is most sensitive to frequencies 

between 500 Hz and 4 kHz.  To simulate this property, the sampled convolution output is 

preemphasized by an approximation of the equal-loudness curve, which has the form 
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3.2.5 Intensity-loudness power law 

 

This model simulates another concept from the psychophysics of human hearing, that is, 

the nonlinear relationship between the perceived loudness and sound intensity.  Let I(Ω) 

be the output of the equal-loudness preemphasis operation; then the power law 

approximates the intensity-loudness relationship by the following equation: 

 

L(Ω) = I(Ω)0.33 

 

3.2.6 Autoregressive modeling 

 

Autoregressive modeling is basically an LPC analysis that is based on the autocorrelation 

method.  The perceptual autocorrelation coefficients Rk(n) are obtained by applying a 32-

point inverse fast Fourier transform (IFFT) to L(Ω).  Hermansky showed in his 

experiment of isolated digit recognition that the optimal order of the linear predictor is 

five.  To get the predictor coefficients ak(m), we need to solve the autocorrelation normal 

equation 

 

∑
=

−=

5

1

)()()(
m

kkk nmRmanR  

 

which can be written in matrix form 
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and can be solved efficiently by using the Levinson-Durbin recursion. 

 

3.2.7 LPC cepstrum coefficients 

 

LPC cepstrum coefficients, which are also called cepstral coefficients, are more robust 

and reliable for speech recognition than LPC coefficients because cepstral coefficients 

have flat spectral sensitivity and low correlation.  Therefore, PLP coefficients need to be 

converted into cepstral coefficients.  As PLP is analogous to LPC, PLP coefficients can 

be converted into cepstral coefficients in the same way that LPC coefficients are 

converted into cepstral coefficients.  Cepstral coefficients can be derived from PLP 

coefficients as follows: 
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In this work, seven cepstral coefficients are calculated for each frame. 

 

 

3.3 Dynamic Time Warping (DTW) 

 

Dynamic time warping (DTW) is a nonlinear time-normalization algorithm for speech 

recognition based on dynamic programming.  DTW works by comparing a parametric 

representation of the input speech to stored templates.  The stored templates contain the 

parametric representation of the vocabulary words.  As mentioned in the previous section, 

the parametric representation of speech used in this work is cepstral coefficients, which 

are derived from PLP coefficients.  Pattern comparison is done by searching for the item 

in the templates that minimizes the distance between the reference pattern and cepstral 

coefficients of the input.  Discussion of DTW in this section follows closely the 

explanation in [1]. 
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3.3.1 Time alignment and normalization 

 

A general problem in comparing two spectral sequences associated with speech is the 

variability in speaking rate and duration of the same speech utterance, even for the 

utterances of the same speaker.  This problem is known as time alignment and 

normalization, and a general solution is to use a time warping function to eliminate the 

timing differences between two speech patterns.  Let X and Y  be the parametric 

representation of  two speech inputs, i.e., 
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where Tx and Ty are the durations of X and Y (the number of frames associated with X and 

Y), respectively.  Figure 9 illustrates a typical warping function that maps ix, the frame 

indices of X, into iy, the frame indices of Y.  

 

Figure 9: Time warping function between ix and iy. 

 

Note that if the two speech patterns have no time differences, the path of the warping 

function would be a diagonal line starting at point (1,1) and ending at point (Tx,Ty).  A 
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general time alignment and normalization method maps the two indices ix and  iy into a 

common time index k which is described by warping functions φx and φy, i.e., 

 

ix = φx(k), k = 1,2,…,T   

iy = φy (k),   k = 1,2,…,T   

 

The purpose of DTW is to find a warping function φ = (φx, φy) that minimizes the 

accumulated distortion over the entire utterance, i.e.,       
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where d(X,Y) is the dissimilarity measure, w(k) is a nonnegative path weighting 

coefficient, ))(),(( kkd yx φφ is the short-time spectral distortion or distance between x and 

y at frame indices φx and φy, respectively, and N is a path normalizing factor.  To measure 

the dissimilarity between two spectral vectors, Euclidean distance is used as a distance 

metric.  If x and y are two five-dimensional vectors, then Euclidean distance d(x,y) is 
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To minimize the accumulated distortion over the entire utterance is essentially to find the 

best path among all possible paths, and the solution can be found using dynamic 

programming, which is a recursive procedure based on the principle of optimality.   

 

3.3.2 Dynamic programming principle 

 

Dynamic programming has been widely used to solve the optimal path problems and 

synchronous sequential decision problems.  To illustrate the optimal path problem, which 

is also called the asynchronous sequential decision problem, suppose we have a set of 
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points labeled from 1 to N, and every pair of points (i,j) has a nonnegative cost ζ(i,j).  

This cost indicates the cost of moving from the ith point to the jth point in one step.  Using 

as many steps as necessary, we need to find the minimum cost of moving from point i to 

point j.  The solution of the problem, based on the optimality principal from Bellman 

[20], states that to obtain the optimal consecutive sequence of moves from i to j, all 

partial intermediate moves must also be optimal.  The steps to determine the minimum 

cost path between points i and j are as follows: 

 

ϕ1(i,j) = ζ(i,l),    l = 1,2,…,N 

)),,(),((min),( 12 lkkili
k

ζϕϕ +=  k = 1,2,...,N l = 1,2,...,N 

)),,(),((min),( 23 lkkili
k

ζϕϕ +=  k = 1,2,...,N l = 1,2,...,N 

)),,(),((min),( 1 lkkili S
k

S ζϕϕ +=
−

 k = 1,2,...,N l = 1,2,...,N 

)),((min),(
1

jiji s
Ss
ϕϕ

≤≤
=  

 

where S is the maximum number of steps allowed and ϕs(i,l) is the s-step best path from 

point i to point l. 

 

Now let us consider the synchronous sequential decision problem.  The problem requires 

us to find the minimum cost ϕΜ(i,j) of an optimal sequence of moves from point i to point 

j in a fixed number of moves M.  Again, the principle of optimality is used to solve this 

problem.  The steps necessary to implement the algorithm are as follows: 

 

1. Initialization: 

ϕ1(i,n) = ζ( i,n) 

 ξ1(n) =  i 

 for n = 1,2,...,N 

2. Recursion: 
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for n = 1,2,...,N and m = 1,2,...,M-2 

3. Termination: 
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4. Path backtracking: 

optimal path = (i,i1,i2,...,iM-1,j), 

    where 

im = ξm+1(im+1), m = M-1,M-2,...,1 

iM = j 

 

Notice that the complexity of this algorithm is on the order of NM computations since the 

algorithm only needs to trace N paths at the end of every move (for a total of M moves). 

 

3.3.3 Warping function constraints 

 

There are several warping constraints associated with DTW to preserve linguistic 

properties in both speech patterns being compared.  For example, if the beginning point 

and the ending point of one speech pattern are reversed, then the comparison performed 

does not make sense linguistically.  The necessary constraints for time alignment in DTW 

are endpoint constraints (boundary conditions), monotonicity conditions, local continuity 

constraints, and slope weighting. 

 

Endpoint constraints are the boundary conditions where the warping function starts and 

ends.  If we have a highly precise speech endpoint detector, then the time-warped starting 

point would correspond to the first frame of test and reference speech patterns, and the 

ending point would correspond to the last frame of test and reference speech patterns.    

However, due to possible inaccuracy in the speech endpoint detection, the endpoint 

constraints are relaxed, i.e.,  

 

  beginning point 1≤φx(1)≤ε ,  1≤φy(1)≤ε 
  ending point  Tx-ε≤ φx(T)≤ Tx Ty-ε≤ φy(T)≤ Ty 
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where ε is the tolerance parameter and it is set to 5.  The second constraint imposed on 

the warping function is monotonicity, which means that the temporal order of the speech 

spectral sequence cannot be changed while doing time normalization.  Clearly, if the 

temporal order is changed, then the speech will have a totally different linguistic 

meaning, or it may not have any meaning anymore.  Furthermore, this constraint implies 

that the evaluated path will not have a negative slope.  The mathematical forms of the 

monotonicity conditions are 

 

φx(k+1) ≥ φx(k) 

φy(k+1) ≥ φy(k) 

 

Other important restrictions in time warping are local continuity constraints, which are 

necessary so that the time normalization process does not throw away any important 

information about the speech patterns.  There are several local continuity conditions 

commonly used for time warping.  Figure 10 shows a set of local continuity constraints, 

called Type I constraints by Rabiner and Juang, used in this work. 

 
Figure 10: Type I local continuity constraints. 
 

 

 

Type I constraints were proposed by Sakoe and Chiba [12], and they can be written 

mathematically as  

 

φx(k+1)-φx(k)≤1 

φy(k+1)-φy(k)≤1 
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By employing Type I constraints, no restriction is imposed on the warping function’s 

slope.  Some other local continuity constraints restrict the warping function’s slope and as 

a result, certain regions of the (ix, iy) plane are excluded from the time warping function.  

Slope weighting is another constraint to give a better measure of the warping function.  

Many slope weighting functions associated with time warping exist, and here we use a 

slope weighting function proposed by Sakoe and Chiba: 

 

w(k)=φx(k)-φx(k-1)+φy(k)-φy(k-1) 

 

Sakoe and Chiba called this weighting coefficient the “symmetric form”.  The 

combination of local continuity constraints and slope weighting is illustrated in        

Figure 11. 

 

Figure 11: Type I local continuity constraints with slope weighting. 

 

The symmetric form of weighting coefficient yields a normalizing factor N=Tx+Ty. 

 

3.3.4 DTW algorithm summary 

 

After discussing all the constraints used in this work, we can summarize the necessary 

steps to implement DTW algorithm as follows: 

1. Initial condition: 

D(φx(1), φy(1)) = 2d(φx(1), φy(1)) 

 

Here we have to find a pair of values (φx(1), φy(1)) within the boundary conditions to        

get minimum accumulated distance.  To find the optimal starting point, the complete 

DTW algorithm needs to be run for every candidate of  (φx(1), φy(1)).  To reduce 
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computation time, we implement a suboptimal procedure to find the values of φx(1) and 

φy(1) by selecting the values that give a minimum initial condition, i.e., 
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 for 1≤φx(1)≤ε and 1≤φx(1)≤ε. 
 

2. Implement DP recursion based on local continuity constraints and slope weighting: 
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 for φx(1) ≤ ix ≤Tx and φy(1) ≤ iy ≤Ty. 

 

3. Calculate time-normalized distance or accumulated distortion: 
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 for Tx-ε≤ φx(T)≤ Tx and Ty-ε≤ φy(T)≤ Ty. 

 

 

3.4 Quantization 

 

After performing speech recognition using DTW with perfect (nonquantized) 

coefficients, we investigate the effect of quantization on the speech recognition 

performance.  PLP coefficients, which are analogous to LPC coefficients, can lead to 

unstable filters when they are quantized and an unstable filter would cause large errors in 

the PLP cepstrum, and probably speech recognition errors.  For this reason, PLP 

coefficients are converted into LSP coefficients before applying vector quantization.   
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3.4.1 Line spectral pairs (LSP) 

 

LSP is widely used in speech coding as a representation of the LPC parameters.  LSP 

encodes speech spectral information in the frequency domain, and it has better 

characteristics than other LPC representations such as LAR (log area ratio) or PARCOR 

(partial correlation).  LSP and LAR are less sensitive to small quantization errors than 

PARCOR.  Most recent speech coders use LSP instead of LAR because interframe and 

intraframe predictability of LSP can be used to reduce the bit rate or increase quality.  

Suppose we have direct form LPC coefficients ak, then the transformation from LPC 

parameters to LSP coefficients [21] is as follows: 
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Some nice characteristics of LSPs are the following: 

1. Terms pn and qn alternate with each other, i.e.,  

0 < p1<q1<p2<q2<p3<π 
2. Terms pn and qn are correlated with each other. 

3. LSP coefficients have high correlation or change slowly from frame to frame. 

The nice ordering and high degree of interframe and intraframe correlation can be 

effectively exploited by a speech coder via predictive quantization and vector 

quantization, respectively. 

 

3.4.2 Vector quantization (VQ) 

 

Vector quantization is commonly used as a data compression method in speech and 

image coding.  According to Gersho and Gray [22], VQ maps a k-dimensional vector in 

vector space Rk into a finite set of k-dimensional vectors Y=(yi; i=1,2,…,N).  Each vector 
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yi  is called a codeword or centroid vector, and the set Y is called the codebook with size 

N.  For example, consider the two-dimensional VQ system illustrated in Figure 12. Here 

the two-dimensional space is divided into several regions or cells, which are called 

Voronoi regions.  Every Voronoi region has one codeword, and every vector in the region 

is assigned to the corresponding centroid.   

 

Figure 12:  Two-dimensional space is divided into Voronoi regions and every region is 
represented by a codeword. 
 

The first task in running the VQ algorithm is to design the codebook.  Before discussing 

how to design a codebook, two things need to be addressed first, namely, the similarity or 

distance measure and a centroid computation procedure.  The distance measure used is 

Euclidean distance of LSP coefficients, which is also the distance measure used for the 

DTW algorithm.  The centroid of each cell is computed by summing all the vectors in the 

corresponding cell and normalizing it by the number of vectors in the cell, i.e., 
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where K is the number of vectors in the cell. 
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The codebook design algorithm employed in this work is a binary splitting version of the 

LBG algorithm, named after Linde et al. [15].  The algorithm is implemented as follows: 

1.  Design a 1-vector codebook (N=1) with centroid y1, i.e., 
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where vi is the training vector.  Initialize the average distortion value D* to an 

arbitrarily large value. 

2.  For m=1,2,…,N, split the centroid to double the size of the codebook, i.e., 
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where  ε is 0.02 in this case.  Also, the value of N needs to be updated to 2N. 

3.  Classify vectors using the nearest neighbor condition by assigning each training vector      

     into its associated centroid based on the Euclidean distance measure.  

4.  Update the centroid in each cell, i.e., 
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where Km is the number of vectors in the cell. 

5.  Compute the average distortion of the updated codebook D using squared error 

distortion measure, i.e.,  
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Then compute δ=(D*-D)/D and set D*=D.  If δ is below a predetermined threshold, 

then stop.  If not, then repeat steps 2 to 4 until the value of δ is below threshold.  The 

value of δ is set to 0.001 in this case. 
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 4. EXPERIMENTAL RESULTS 

 

The first experiment is to do speaker-independent isolated digit recognition without any 

quantization process.  The test set consists of 220 utterances from 10 men and 10 women.  

The test set and the template set are completely different; in other words, no overlap 

between test files and reference files.  The speech boundaries are manually corrected for all 

experiments.  At first, two templates per word are used to do recognition, i.e., the reference 

template consists of 22 utterances for 11 digits (two for each digit).  Half of those are 

men’s utterances, and the other half are women’s.  The accuracy of the speech recognition 

system in the first experiment is 93.18%.   

 

The recognition accuracy is somewhat low for real application and it is expected to 

decrease further as quantization is inserted into the system.  However, as Hermansky 

shows in his experiment of speaker-independent isolated digit recognition, the accuracy 

can be increased dramatically as the number of templates per word is increased.  Therefore, 

we increase the number of templates per word to 9 and 12.  The recognition accuracy 

reaches 95.91% and 97.73% for 9 and 12 templates per word, respectively.  Hermansky 

did experiments by varying the number of templates per word from 2 to 23, and the 

recognition accuracy’s range is from 92% to 98%.  Furthermore, the results obtained in 

this work are comparable to those of Hermansky’s experiments. 

   

Next, LSP coefficients are quantized and the codebook size is varied from 64 (six bits) to 

256 (eight bits).  The codebook is designed using the LBG algorithm from a set of 792 

utterances (36 men and 36 women).  For all subsequent experiments, nine and twelve 

templates per word are used because the accuracy of the system with two templates per 

word is already too low and the quantization process will decrease the performance further.  

To further reduce the bit rate, PLP analysis is done every 20 ms instead of 10 ms, which is 

essentially down-sampling the speech pattern by a factor of two.  Then the speech patterns 

are linearly interpolated to get the original sampling rate before recognition is performed.  

As LSP coefficients vary slowly from frame to frame, the distortion introduced by down-

sampling and interpolation operations is expected to be small so the degradation in 
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recognition accuracy is not significant.  Experiments using this scheme are also performed 

without quantization and with quantization using six to eight bits.   

 

Figure 13 shows the results of experiments discussed so far (excluding experiments using 

two templates per word).  An infinite number of bits corresponds to no quantization 

process.   
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Figure 13: Recognition accuracy as a function of number of bits 

 

As expected, we can see from Figure 13 that the recognition accuracy declines as the 

number of bits used in quantization decreases, except for one case.  The system with the 

10-ms analysis step and 9 templates per word shows a different behavior because 7-bit 

quantization performs worse than 6-bit quantization.  For all cases, 8-bit quantization 

yields only slight degradation compared to the no quantization scheme.  The difference 

between the results of 8-bit quantization and no quantization is statistically insignificant 

because the accuracies of 8-bit quantization systems are still within the range of standard 

deviation of the accuracies of systems without quantization.  For example, the accuracy of 

a system with an interpolated 10-ms analysis step and 12 templates per word is 96.82% 

without quantization.  Let P be the recognition accuracy and N be the total number of test 

files; then the standard deviation σ can be calculated as follows: 
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A similar system quantized with eight bits yields accuracy of 96.36%, which is still within 

a range of 96.82 ± 0.9840 = [95.836, 98.804]. 

 

The last experiment is using 20-ms PLP analysis also; however, no linear interpolation is 

involved in the speech recognition system.  Both test and reference speech patterns have 

20-ms analysis steps, so the number of computations is much less than that of previous 

experiments.  The experiment is also carried out using 9 and 12 templates per word and by 

varying the degree of quantization.  Since much information is lost due to down-sampling, 

the recognition accuracy of this system is inferior to systems in previous experiments using 

the same number of templates per word.  Without quantization, the accuracy only reaches 

93.18% and 95% for 9 and 12 templates per word, respectively.  For convenience, all 

results of the experiments obtained in this work are tabulated in Table 2. 

 

Table 2: The recognition accuracy of experiments in this work. 

Quantization Templates 
per word 

Analysis step 
6 7 8 Infinity 

2 10 ms -  - - 93.18 
9 10 ms 93.18 90.91 95.00 95.91 
9 10 ms (interpolated) 91.82 91.82 94.09 95.00 
9 20 ms  89.55 91.82 93.64 93.18 
12 10 ms 94.55 94.55 97.27 97.73 
12 10 ms (interpolated) 93.18 96.36 96.36 96.82 
12 20 ms 91.36 93.64 94.09 95.00 

 

The results of the experiments suggest that a good speaker-independent digit recognition 

system can be developed using PLP analysis and the DTW algorithm with a fairly low bit 

rate.  Of all experiments carried out in this work, the system employing down-sample and 

interpolation operations seems most promising.  If 8-bit quantization is used, the achieved 

bit rate is only 400 bit/s.  This number is much lower than the bit rate of the speech coder 

used in wireless communication, which typically has a bit rate of 4.8 kb/s to 8 kb/s.  
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Transmitting both CS-ACELP speech coder parameters and quantized PLP parameters 

would require 8.4 kb/s, an increase of only 5% over the normal CS-ACELP bit rate.   
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5. CONCLUSION AND FUTURE WORK 

 

A speaker-independent isolated digit recognition system using PLP analysis and the DTW 

algorithm has been examined in this work.  The system is examined with and without 

vector quantization.  Vector quantization is used instead of scalar quantization because 

vector quantization gives lower distortion than scalar quantization for the same number of 

bits.  Based on the results of experiments, quantization using eight bits or higher is 

recommended since the degradation introduced in recognition performance is not 

significant compared to the system without quantization. 

 

To minimize the bit rate further without degrading recognition performance, the analysis 

step at the front-end processor is changed to 20 ms.  The experiment shows that the 

performance does not decrease substantially as long as linear interpolation is carried out at 

the decoder.  A big advantage of this system is the very low bit rate required to transmit 

LSP coefficients; the bit rate is half that of a system with a 10-ms analysis step. 

 

Although the performance of the recognition system in this work is fairly good, further 

work is needed to determine the effect of a speech coder on the recognition system as a 

speech coder is known to reduce the recognition accuracy slightly.  According to [2] and 

[3], extracting recognition features from synthesized speech at the decoder rather than from  

unquantized speech results in a WRA decrease from 96.17% to 95.16% and from 83.6% to 

78.1%, respectively.  The degradation is worse than that introduced by quantizing LSP 

coefficients.  Therefore, it is probably better to do recognition using the quantized LSP 

coefficients rather than using the decoded speech.   

 

Furthermore, a good endpoint detection algorithm needs to be incorporated into the 

recognition system in this work.  Using automatic endpoint detection, the performance of 

the system needs to be examined to determine whether the accuracy achieved in this work 

changes significantly or not.  In this work, no template clustering was used to design the 

reference templates.  According to [1], template training by clustering is necessary to 

achieve high performance for practical tasks.  Hence, the effect of template clustering on 
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the WRA in this work needs to be studied further.  Another important problem that needs 

to be examined is the effect of the presence of background noise on the recognition 

performance.  Finally, the accuracy of the system in this work using the HMM recognition 

algorithm is worth investigating since HMM is commonly used as a recognizer. 
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