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ABSTRACT

Speech is a natural mode of communication for hub&ngs and speech recognition is
an application that enables the interaction betwasnan and machine via voice. As the
cost of software and hardware needed to do redogndecreases, automatic speech
recognition (ASR) has entered the consumer prodoainstream. A particularly
interesting application is wireless speech recagmitwhich is the integration of ASR
technology into wireless applications. Utilizing ASR system, people can interact via
their cell phone using voice, thereby freeing thends and eyes for other tasks. One
aspect of speech recognition useful for wirelegsiegtions is digit recognition. In this
paper, we perform speaker—independent isolated igognition using PLP (perceptual
linear predictive) analysis and a DTW (dynamic tim&ping) algorithm. The effect of
guantization of speech recognition features on geition accuracy is examined to

determine the lowest bit rate possible while mamtg high quality performance.
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1. INTRODUCTION

Automatic speech recognition (ASR) has been a subject of research since the 1940s.
Many people have envisioned the interaction between human and machine using voice,
as can be seen in many science-fiction movies. Speech recognition and speech synthesis
are two main areas of voice processing that enable the interaction between human and
machine. In the early days, voice processing technologies such as speech recognition
could only be found in research laboratories, but now these technologies have found their

way into avariety of commercial applications.

Early ASR systems could only do isolated digit recognition for a single speaker [1].
Later generations of ASR were able to do much more complicated tasks such as
connected word recognition. The most recent ASR system, which is available
commercialy, is able to recognize continuous speech with proper training. The
popularity of ASR nowadays is fueled by several factors such as the advances in digita
signa processing technology, the substantial decrease of computation cost and memory,
and the exponential increase of computing power found in both general-purpose and

Special-purpose processors.

These days we can see that speech recognition has penetrated many areas in everyday
life. People can go to computer stores and buy a high-performance dictation system,
which allows users to use voice as input instead of a keyboard. Some companies have
started to use speech recognition technology to enable customers to obtain weather
information, stock quotes, business news, sports news, traffic reports, and local restaurant
guides. Telecommunications, afield that enjoys remarkable growth with the booming of
the wireless and Internet industries, has also helped propel speech recognition technol ogy

into consumer applications.

One application of ASR in the wireless industry is to provide hands-free, eyes-free
interaction between user and cellular telephone viavoice. This application is particularly

useful when people are driving or doing other tasks that require using the hands and eyes.



Some countries even prohibit the use of cellular phones, a prohibition that will no longer
be necessary with voice-activated dialing. Cellular phones can also be programmed to
store persona phone directories and to perform advanced tasks such as caller ID, call
waiting, last number dialed, and call forwarding. Programming a cell phone via speech
commands gives a more efficient and smoother interaction between user and cell phone
than using a tiny keypad in the cell phone. Hence, as the use of cellular phone becomes
more widespread, wireless speech recognition emerges as a research field of interest to
industry and academe.



2. BACKGROUND

2.1 Previous Work

As mentioned previously, the tremendous growthhi wireless communication industry
is one of the factors that promotes the realizattdnspeech recognition in digital

communication networks. More and more people dustry and academe are now doing
research toward the design of a high quality waelgpeech recognition system. Kim and
Cox [2] state that the research work on a front-design for wireless speech recognition
can be classified into three categories. The fiedegory is shown in Figure 1. This

system uses the synthesized speech from a speesntied@s an input to an ASR system.

Wireline
Quality Speech
S N Speech | (? l:j?rjr_]?]___- Speech Recognition L = To ASR
peech Encodecr Decoder Feature Extractor

Figure 1: A conventional approach in which the otitpf the speech decoder serves as the
input to the ASR system (after Kim and Cox [2]).

Works on the above system have been reported-fY[2pr 1S-641, GSM (Global System
for Mobile Communications), CELP (code-excited &neprediction), LD-CELP (low
delay CELP), and QCELP (Qualcomm CELP) environment®epending on the
vocabulary size to be recognized and the adversitgition of the test utterance, the word
error rate (WER) ranges from 0.5% to 7% and thedwmcognition accuracy (WRA)
ranges from 83% to 99%. WER and WRA are two metcemmonly used to measure
speech recognition performance. It has been shibatrthe performance of this system is
lower than that for wireline ASR [2]-[6]. WirelinASR is an ASR that is trained and
tested using standard wireline quality speech, wiispeech sampled at 8 kHz and coded
usingu-law or A-law companding. Kim and Cox show thatep the same database and
condition, the word accuracy of wireline ASR isBB%, whereas the word accuracy of the
above approach is 94.75%. Experiments by Chol.dB8halso show a similar trend in

which recognition rate of the above approach isl&8 than that of wireline ASR. The



degradation in performance is due to the specis&brtion introduced by speech coder and

decoder.

In the second approach, a front-end processor escthet recognition feature instead of
original speech. Speech recognition parametegesotitputs of the encoder, are quantized

and transmitted as illustrated in Figure 2.

Speech Synthetic
Synthesizer Quality Speech
5 h Recognition Channel
PEECT — - Feature Encoder [-=-==-=-==-=-=--=-==--- -
Recognition
Feature Decoder —— To ASR

Figure 2: The speech recognition feature is encbydtie front-end processor, and the
input to the ASR system is the decoded recognfgature (after Kim and Cox [2]).

This scheme yields recognition accuracy comparablbat of wireline ASR, as reported
by Digalakis et al. [8]. Using MFCC (mel frequenearped cepstral coefficients) as a
parametric representation of the speech, they shatthe required bit rate to achieve the
recognition performance close to that of wirelin€R\is 2000 bits per second. They
reported a WER of 6.55% and 6.63% for wireline ASRd second category ASR,
respectively. However, because only speech rettogrmparameters are transmitted, much
information contained in the original speech ig.lo€onsequently, the synthesized speech
does not have high quality, whereas the first sygteable to generate high quality speech
in addition to having good speech recognition penemce. The advantage of the second
approach is that a lower bit rate can be achieyeohty encoding the recognition features.

Another similar study using this scheme is repohktgd sakalidis et al. [9].

Speech Wireline
Decoder Quality Speech

Channel
Speech ——= Speech Encoder [---------------------- -

Bitstrearn-based
Feature Extractor

— To ASR

Figure 3: The speech recognition feature is exthfitom the bitstream of the speech
coder (after Kim and Cox [2]).



The third system, shown in Figure 3, extracts dpaecognition parameters from the
bitstream of a speech coder. According to Kim &oad, this approach is able to generate
high quality speech and has better recognition racguthan the first category system.
Their experiments yield recognition accuracy ofl886 and 95.81% for category one and
category three systems, respectively. ExperimaniShoi et al. [10] confirm this view in
which the recognition rate of the first and thiggtems are 82.5% and 84.1%, respectively.
However, the recognition accuracy of this approacistill lower than that of wireline
ASR, which is also shown in [2] and [10]. Tableoft page 6 shows the results of

experiments using the three systems.

Most of the recent research in speech recognitiopl@ys a recognition algorithm called
the hidden Markov model (HMM). In this work, andel technique, dynamic time
warping (DTW), is used for speaker-independentaisal digit recognition. A closely
related work using this algorithm was done by Sakoé Chiba [12], who described an
optimum dynamic programming (DP) based time-noraadlon algorithm for spoken word
recognition. Another important work using dynaniime warping algorithm is that of
Rabiner et al. [13].

In this work, perceptual linear predictive (PLP)effcients are used as parametric
representations of acoustic data. PLP analysisfnsproposed by Hermansky [14], and
he also performed speaker-independent isolated AR experiments using the DTW
algorithm. Hermansky showed that PLP is a beteprasentation of the linguistic
information in speech than is conventional LP @inpredictive) analysis. In addition, he
reported that a PLP-based recognition system densig performed better than an LP-
based system by comparing WRA of ASR systems usiffgorder LP analysis and™s
order PLP analysis. For example, with two templgter word, a PLP-based system'’s

accuracy is 92%, whereas an LP-based system’samcig 90%.



Table 1: The performance of different categorieszobgnition system.

Reference| Clasg Acoustic [Mod€e’ | Codef Algorithm® | Vocabulary Metric (%)
feature$
[2] WL LPCC Cw - GMHMM Digits WRA =96.17
2] 1 LPCC CW | IS641 | GMHMM Digits WRA = 95.16
[2] 3 LPCC Ccw 1S-641 GMHMM Digits WRA =95.81
[2] 3 LPCC, Cw 1S-641 GMHMM Digits WRA = 95.96
ACG,
FCG
[3] WL MFCC Cw QCELP DHMM Digits WRA =87.00
[3] 1 MFCC Cw QCELP DHMM Digits WRA = 83.60
[4] WL MFCC W - GMHMM Digits WRA = 99.66
[4] 1 MFCC W FR-GSM GMHMM Digits WRA = 99.53
[4] 3 MFCC W FR-GSM GMHMM Digits WRA = 99.25
[5] WL |RN-LFCC W, - GMHMM 43 words, WRA =
Ccw 26 letters, 90.00-99.50
and digits
[5] 1 RN-LFCC W, FR-GSM, GMHMM 43 words, WRA =
Cw HR-GSM 26 letters, 80.00-99.30
and digits
[6] WL LPCC W - GMHMM 23 words WRA = 96.61
[6] 1 LPCC W CELP, GMHMM 23 words WRA =
LD-CELP, 91.95-94.52
FR-GSM
[7] 1 MFCC NA GSM PHIL90 Digits and 26 WER = 0.5-5.0
words
[8] WL MFCC CSs - GMHMM ATIS WER = 6.63
[8] 2 MFCC CS - GMHMM ATIS WER = 6.63
[9] 2 MFCC CS - DMHMM ATIS WER =
6.25-6.60
[10] WL LSP W QCELP DHMM 26 words WRA =90.20
[10] 1 LSP W QCELP DHMM 26 words WRA = 82.50
[10] 3 LSP W QCELP DHMM 26 words WRA =84.10
[10] WL MPCEP W QCELP DHMM 26 words WRA =94.70
[10] 1 MPCEP W QCELP DHMM 26 words WRA = 89.80
[10] 3 MPCEP W QCELP DHMM 26 words WRA =90.60

'Classes 1, 2, 3 correspond to the systems in Figus and 3 respectively. Class WL corresponds to
wireline ASR. 2LPCC = LPC cepstral coefficients, ACG = adaptiveamook gain, FCG = fixed codebook
gain, MFCC = mel-frequency cepstrum coefficientsl-B-CC = root-normalized linear frequency cepstrum
coefficients, LSP = line spectral pairs, MPCEP =l-smale pseudo-cepstrum coefficients®Mode
corresponds to the speaking style, which is eittW¥r (isolated words), CW (connected words), CS
(continuous speech), or NA (data not availabf§peech coder is one of the following: 1S-641 is4kb/s
ACELP (algebraic CELP) coder, QCELP = Qualcomm CELPkb/s), FR-GSM = full rate GSM (13 kb/s),
HR-GSM = half rate GSM (5.6 kb/s), LD-CELP = lowlale CELP (16 kb/s).°Algorithm corresponds to
recognition algorithm. Algorithm is one of the lfoking: DHMM = discrete-density HMM, DMHMM =
discrete-mixture HMM, GMHMM = Gaussian-mixture HMMPHIL90 is a speech recognition system
developed at France Telecom/CNET (Centre Natioeal Belecommunications)°Refer to [11] for more
information on the ATIS (air travel information $§m) domain.



2.2 Problem Statement

Speech recognition is computationally expensivguireng a large amount of memory and
processing power. Implementing a complete speecbgnition algorithm in a cell phone
would put a big burden on the cell phone’s hardward software requirements, which
could cause the cost of cell phones to increasmatieally. To overcome this problem,
the speech recognition system is distributed olrercell phone and base station. In the
cellular phone, the front-end processor calculatpsgntizes, and encodes the speech
recognition feature. Then the encoded coefficianéstransmitted to the base station, and
the decoder extracts the coefficients. These dtocbefficients, which are PLP
coefficients, are converted into cepstral coeffitse and the speech recognition algorithm
(dynamic time warping) is run using cepstral camdints as input.

The focus of this work is speaker-independent tedlaligit recognition, with 11 English
digits (zero to nine and the word “oh”) servingvasid inputs. First, speech recognition is
implemented without any quantization, as shownigufe 4, which means that the DTW

recognizer has a perfect input (no distortion).

Reference or

Template
Sp?e_‘:h Endpoint Feature Extraction Patrern Matching Decision Rul Recognized
{Digits) Detection {PLP analysis) {DTW) ecision Rule Speech

Figure 4: ASR system without quantization

Then we examine the quantization effect on the dpeecognition performance. PLP
coefficients are converted into LSP (line specpalrs) before being quantized using
vector quantization. Codebooks, designed usingL®@ algorithm [15], are varied to
explore the trade-off between bit rate and perforeea as the performance tends to be
lower while the bit rate is decreased. Furthermtve number of templates per word is

also varied.



Next, the speech features are down-sampled bytarfattwo to lower the transmission
bit rate, and the system implements linear interffah upon down-sampled speech
features before running recognition algorithm. ke recognition accuracy is calculated
to see how the performance is affected. The lgstesr implements similar system
without linear interpolation. It is expected thatdown-sampled system with linear

interpolation will outperform its counterpart withiointerpolation.



3. SYSTEM DESCRIPTION

3.1 Preprocessing

Input speech waveforms are taken from the TIDIGId&abase (Linguistic Data
Consortium, 1990). The input speech data has sagh@te of 20 kHz, and telephone
speech is normally sampled at 8 kHz. Consequahiysampling rate has to be changed
from 20 kHz to 8 kHz. This is done by up-sampliog a factor of two and down-
sampling by a factor of five. To avoid aliasingpa-pass FIR filter with cutofft/5 and
order 30 is applied to eliminate frequency contdrigher than 4 kHz (Nyquist rate).
Figure 5 shows the impulse response and frequesspgonse of the filter, which was

designed using a Hamming window.

Amplitude

Impulse response ] Magnitude response
02 ‘ . . : :
st
ik}
Rl
015k =
Iy [y
Doat
=
0zt
s 0 L L
-1 -08 05 -04 02 0 02 04 0 0B |
MNormalized frequency
Phase response
o5k 4 T : .
£ 2
o
e
D}O‘D(P(Po O @ QQQQOQ =0
&l“ Hl& o
w
2 2r
0
-005 L L L L -4 . . ! . . . . . .
0 5 o _ 15 £l 25 30 -1 -08 05 -04 02 0 02 04 06 0B |
Time (samples) Mormalized frequency
(a) (b)

Figure 5: A 38-order low-pass FIR filter: (a) impulse respon$®,magnitude response
and phase response.

An important problem in speech recognition is ttedaine where the speech begins and
ends. This is known as the speech endpoint detegioblem. Wilpon et al. [16]
showed in their multispeaker digit recognition expent that even a slight error in

endpoint detection could result in significant detation in recognition accuracy. For



example, in their experiment, recognition accura®creases by 10% because the
endpoints are inaccurately identified by approxeghatl20 ms. Therefore, a good
endpoint detection algorithm is necessary in tle®sp recognition system. The endpoint
detection algorithm used in this work was propdsgd@Rabiner et al. [17]. The algorithm
uses energy and zero crossing rate measuremetésetonine beginning and end points.
However, to speed up the running time, only speeshrgy is used to detect the
endpoints in this work. Because the speech datacisrded in a high signal-to-noise
ratio acoustic environment, the detection algoritismexpected to work well for most
cases. During the experiment, incorrect endpoants corrected manually to better

investigate the recognition accuracy.

The speech energi(n) is computed by summing the magnitudes of 10 mspefech

centered on the measurement interval. If we dethetspeech signal byn), then

40

E(n) =D |x(n+i)

i=—40

To detect the endpoint location, first we need mow the statistics of the background
silence. The average energy of the backgroundcsles computed by averaging the
energy during the first 100 ms of the signal. Catapon of the energy of the
background silence assumes that there is no spketiy the first 100 ms. Second, the
peak energy of the entire speech file is computetingding the maximum oE(n). Let
IMX be the peak energy antlIN be the silence energy; then two thresholdg, and
ITU, are calculated based on the following equations:

10



11 = 0.03*(MX-IMN)+ IMN

12 = 4*IMN
ITL = MIN(I1, 12)
ITU = 5% TL

To find the beginning point, the algorithm starislbcating the point where the signal
energy exceeds the upper threshold). From this point, the algorithm searches
backwards to find a point at which the energy fa#ow the lower thresholdL for the

first time. The ending point is found in a similaay. Figure 6 shows the energy plot of

word “three” and the result of the endpoint detatilgorithm, respectively.

cin? Energy plot of word "three” Speech input of word "three”
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Figure 6: Outputs of endpoint detection algoritt{a): Energy plot of speech utterance
“three” along with the beginning and the ending ksafshown in dotted lines). (b)
The original speech signal is plotted with the hagig and the ending marks.
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3.2 Perceptual Linear Predictive (PLP) Analysis

3.2.1 Overview

PLP analysis was proposed by Hynek Hermansky i198LP analysis is similar to
linear predictive coding (LPC), which is a widelpdwn technique in speech coding,
except the PLP technique also uses three concepts the psychophysics of hearing.
These three concepts are the critical-band spe@salution, equal-loudness curve, and
intensity-loudness power law. Figure 7 below showsessary steps to implement the
PLP method.

Speech Data
¥ ¥
Critica_l. Band Inverse Discrete
Analysis Fourier Transformn
¥  §

Equal-Loudness Solution for

Preemnphasis Autoregressive
Coefficients
¥
Intensity-Loudness
Conversion All-Pole Model

Figure 7: Block diagram of PLP analysis (after tdansky [14]).

Both LPC and PLP use the autoregressive all-poldeinto estimate the short-term
power spectrum of speech. However, as pointedogutermansky, the LPC all-pole
model is not consistent with human auditory peliogpbecause it does not consider the

nonuniform frequency resolution and intensity rasoh of hearing. PLP alleviates this

12



problem by applying the all-pole model to the amigitspectrum. The auditory spectrum
is designed to be an estimate of the mean rateirg of auditory nerve fibers. The all-
pole model encodes the frequencies and the barusvadtthe two most important peaks
in the auditory spectrum, as suggested by the vpesmeption model of Chistovich [18].

3.2.2 Spectral analysis

After the sampling rate conversion described intiBec3.1, the filtered speech data is

blocked into overlapping frames of 240 samplesr{®&). The amount of overlap is 160

samples (20 ms); in other words, adjacent framessaparated by 80 samples (10 ms).
Let s(n) be the filtered speech data(n) be thek™ frame of speech, and be the total

number of frames. Then

xk(n) = s(80k+n), n=0,1,...,239 k=0,1,...-1

A 30-ms asymmetric window is applied to each fratee minimize the signal
discontinuities at the beginning and end of eaem#& by tapering the signal to zero or
near zero. The first half of the window is halfasHamming window, and the second

half is a quarter period of a cosine functionwé# denote the window by(n), then

2m
054- 0.46co{—j, n=0,...,199
() = 399
CO{M) n=200,...,239
159 ’ o

This asymmetrical window was chosen because itassindow used by the CS-ACELP
(conjugate-structure algebraic code-excited linpaedictive) speech coder for LP

analysis [19].

13
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Figure 8: Asymmetric window with 30 ms duration.

Figure 8 shows the plot of this window. The asyrtrioal shape is intended to reduce
the look-ahead without compromising quality. Nitwe windowed frame becomes

s(n) = x(Nw(n), n=0,1,...,239 k=0,1,...-1

Next, a 256-point fast Fourier transform (FFT) sed to transform 240 speech samples
in every frame into the frequency domain by paddi6gero-valued samples. L&8{w)
be the Fourier transform o&(n). Then the short-term speech spectrum is obtalyed

squaring the real and imaginary component§ @) and adding them, i.e.,

P(w) = ReS(o)]*+Im[S(w)]?

wherew is the angular frequency in rad/s. Note thatphver spectrum is essentially the
squared-magnitude of complex numBgw).

3.2.3 Critical band analysis

A critical band is the smallest bandwidth such thatloudness of a sound is perceived to

be different. At a constant sound pressure, set@mas lying within a critical bandwidth

14



give the same level of perceived loudness as despge tone lying at the center of the
band whose intensity equals the sum of the compotogre intensities. If tones are
separated by more than a critical bandwidth, thembination is perceived to become
louder. The frequency scale in which a criticahdhaidth is always one unit is called

Bark. The power spectruR(w) is warped into Bark frequendy using the equation

Q(w) = 6 In{w/1200t + [(/1200r)*+1]°}

The Bark-scaled power spectrum is convolved with power spectrum of the critical
band masking curvé’(Q). This step simulates the frequency resolution of ébe in
which P(Q) integrates all the loudness of the tones lying withcritical bandwidth into
one loudness of equivalent single tone. The atitbtand curve is given by

7= 0 for Q< -1.3
1072609 for —1.%Q<-0.5,
1 for -0.5x0Q<0.5,
10€@-%%  for 0.5x0<2.5,
0 for 2>2.5

The convolution ofP(w) with masking curve?(Q2) in effect reduces the spectral
resolution of Pg). Then the output of convolution is down-sampled aypling it in 1-
Bark intervals at integer points (1,...,15) to cotlee frequency from 0 to 15.575 Bark
(0-4 kHz).

3.2.4 Equal-loudness preemphasis
The ear does not hear all frequencies with equaisety, i.e., the perceived loudness is
different at different frequencies. The human &amost sensitive to frequencies

between 500 Hz and 4 kHz. To simulate this prgpée sampled convolution output is

preemphasized by an approximation of the equaldess curve, which has the form

15



(0®+56.8x10°)0*

B0) = 71 630 (0 + 038407

3.2.5 Intensity-loudness power law

This model simulates another concept from the psyloiisics of human hearing, that is,
the nonlinear relationship between the perceivediess and sound intensity. L&Q)
be the output of the equal-loudness preemphasisabpe then the power law
approximates the intensity-loudness relationshighieyfollowing equation:

L(2) = 1(Q)°**
3.2.6 Autoregressive modeling

Autoregressive modeling is basically an LPC analyisat is based on the autocorrelation
method. The perceptual autocorrelation coefficg&afn) are obtained by applying a 32-
point inverse fast Fourier transform (IFFT) td¢)). Hermansky showed in his
experiment of isolated digit recognition that thaimal order of the linear predictor is
five. To get the predictor coefficiendg(m), we need to solve the autocorrelation normal

equation
5
R.(n) => a, (MR, (m-nl)
m=1
which can be written in matrix form

RO RO RE@ RO R@[a®]| [RO]
RO RO RO RE@ RO|a@| |R@
R(@ RO RO RO REO|a@|=REG
RE RE@ RO RO RO|a@| |R@
R4 RE RE@ RO ROJaE| [RO]

16



and can be solved efficiently by using the Levinr&ambin recursion.
3.2.7 LPC cepstrum coefficients

LPC cepstrum coefficients, which are also calledstal coefficients, are more robust
and reliable for speech recognition than LPC cokffits because cepstral coefficients
have flat spectral sensitivity and low correlatiofiherefore, PLP coefficients need to be
converted into cepstral coefficients. As PLP ialagous to LPC, PLP coefficients can
be converted into cepstral coefficients in the saway that LPC coefficients are
converted into cepstral coefficients. Cepstralffocients can be derived from PLP

coefficients as follows:

¢ (n) = a, (n) + 2(';}: ()a (n-i),  1=n<s

C (n) = ni(lﬁjck (Ha,(n-1i), n>5

In this work, seven cepstral coefficients are dalad for each frame.

3.3 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) is a nonlinear time-n@almation algorithm for speech
recognition based on dynamic programming. DTW wdoly comparing a parametric
representation of the input speech to stored teglaThe stored templates contain the
parametric representation of the vocabulary wors mentioned in the previous section,
the parametric representation of speech used snwihrk is cepstral coefficients, which
are derived from PLP coefficients. Pattern conguariis done by searching for the item
in the templates that minimizes the distance betwibe reference pattern and cepstral
coefficients of the input. Discussion of DTW inighsection follows closely the

explanation in [1].

17



3.3.1 Time alignment and normalization

A general problem in comparing two spectral seqgesrassociated with speech is the
variability in speaking rate and duration of themsaspeech utterance, even for the
utterances of the same speaker. This problem @wvknas time alignment and
normalization, and a general solution is to usen® twarping function to eliminate the
timing differences between two speech patterns.t Xeand Y be the parametric
representation of two speech inputs, i.e.,

X =(xl,x2,...,xTx)

Y=()’11Y2’---ayTy

whereTy andT, are the durations of andY (the number of frames associated witlnd
Y), respectively. Figure 9 illustrates a typicalrpiag function that maps, the frame

indices ofX, intoiy, the frame indices of.

Figure 9: Time warping function betwegmndiy.

Note that if the two speech patterns have no tinfferdnces, the path of the warping

function would be a diagonal line starting at pdibtl) and ending at poinTy{Ty). A

18



general time alignment and normalization method srthe two indicesy and iy into a

common time index which is described by warping functiopsandg,, i.e.,

iv- g(k),  k=1.2,..T
iy- (K,  k=1,2,..T

The purpose of DTW is to find a warping functign= (¢, ¢,) that minimizes the

accumulated distortion over the entire utteraneeg, i

d(X,Y) = % min Z d(g, (k) (K))w(k)

where d(X,Y) is the dissimilarity measurew(k) is a nonnegative path weighting

coefficient, d(g, (k), ¢, (k))is the short-time spectral distortion or distaneeaeenx and

y at frame indicegy andg,, respectively, andll is a path normalizing factor. To measure
the dissimilarity between two spectral vectors, IEiean distance is used as a distance

metric. Ifx andy are two five-dimensional vectors, then Euclideetathced(X,y) is

d0y) = D% = vl

To minimize the accumulated distortion over thdrenitterance is essentially to find the
best path among all possible paths, and the saolutem be found using dynamic

programming, which is a recursive procedure basethe principle of optimality.
3.3.2 Dynamic programming principle

Dynamic programming has been widely used to sdhee dptimal path problems and
synchronous sequential decision problems. Totrlis the optimal path problem, which

is also called the asynchronous sequential deciioblem, suppose we have a set of
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points labeled from 1 to N, and every pair of psififj) has a nonnegative cost,j).
This cost indicates the cost of moving from fi@oint to thg™ point in one step. Using
as many steps as necessary, we need to find themammcost of moving from poiritto
pointj. The solution of the problem, based on the ogtiynarincipal from Bellman
[20], states that to obtain the optimal consecusegquence of moves fromto j, all
partial intermediate moves must also be optimahe $teps to determine the minimum

cost path between pointandj are as follows:

(i) = &), 1=1,2,...N
o, (1)=min(e, (k) +< (K1), k=12.N 1=12.N

ps 1) = min(p, () +¢(k 1), k=12..N 1=12,.N
ps(,1) =min(pe, (,K)+< (1), k=1,2..N 1=12,.N

p(, 1) = min(e. (. )

whereSis the maximum number of steps allowed ag@,l) is thes-step best path from

pointi to pointl.

Now let us consider the synchronous sequentiakaetiproblem. The problem requires
us to find the minimum cost(i,j) of an optimal sequence of moves from poitat point
j in a fixed number of movesl. Again, the principle of optimality is used toham this

problem. The steps necessary to implement theitdgoare as follows:

1. Initialization:

ei(i,n) =¢(i,n)
&(n) =
forn=1,2,..N

2. Recursion:
P (1) = Minp,, (1) +& (1))
£ (1) = argminl,, (,1)+< (, 0]
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forn=1,2,..Nandm=1,2,..M-2
3. Termination:

ow i, 1) = minlpy 4 (1) +£ (0, )]

£u (i) =argminlg,, (.1 +¢ (. )]

4. Path backtracking:
optimal path =i(i1,i2,...,im-1,]),
where
im= &ms(ime1), m=M-1M-2,...,1

iM:j

Notice that the complexity of this algorithm is thre order oNM computations since the

algorithm only needs to trad¢paths at the end of every move (for a totdlainoves).
3.3.3 Warping function constraints

There are several warping constraints associatdd DWW to preserve linguistic
properties in both speech patterns being compaFed.example, if the beginning point
and the ending point of one speech pattern aregedethen the comparison performed
does not make sense linguistically. The necessargtraints for time alignment in DTW
are endpoint constraints (boundary conditions), ebamicity conditions, local continuity

constraints, and slope weighting.

Endpoint constraints are the boundary conditionsrelthe warping function starts and
ends. If we have a highly precise speech endpleitector, then the time-warped starting
point would correspond to the first frame of testl aeference speech patterns, and the
ending point would correspond to the last framedest and reference speech patterns.
However, due to possible inaccuracy in the speedpa@nt detection, the endpoint

constraints are relaxed, i.e.,

beginning point 1<g(1)<e, 1<g(1)<e
ending point Te-e< (TS Ty Tye<g(T)<Ty
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wheree is the tolerance parameter and it is set to 5. Sdo®nd constraint imposed on
the warping function is monotonicity, which meahattthe temporal order of the speech
spectral sequence cannot be changed while doing mionmalization. Clearly, if the
temporal order is changed, then the speech willehavtotally different linguistic
meaning, or it may not have any meaning anymongthErmore, this constraint implies
that the evaluated path will not have a negatiopesl The mathematical forms of the

monotonicity conditions are

ok+1) > (k)
#y(k+1)=> gy(K)

Other important restrictions in time warping aredbcontinuity constraints, which are
necessary so that the time normalization process dot throw away any important
information about the speech patterns. There averal local continuity conditions
commonly used for time warping. Figure 10 shovse®of local continuity constraints,

called Type | constraints by Rabiner and Juang] uséhis work.

Figure 10: Type | local continuity constraints.

Type | constraints were proposed by Sakoe and GhRjaand they can be written
mathematically as

d(k+1)-g(k)<1
dy(k+1)-gy(K)<1
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By employing Type | constraints, no restrictioningposed on the warping function’s

slope. Some other local continuity constraint$rigisthe warping function’s slope and as
a result, certain regions of thig {y) plane are excluded from the time warping function
Slope weighting is another constraint to give adrsaneasure of the warping function.
Many slope weighting functions associated with tiwerping exist, and here we use a

slope weighting function proposed by Sakoe and &hib

W(K)=g(K)- g(k-1)+4(K)- gy (k-1)

Sakoe and Chiba called this weighting coefficiehe t*symmetric form”. The
combination of local continuity constraints and pgoweighting is illustrated in

Figure 11.

Figure 11: Type | local continuity constraints witlope weighting.

The symmetric form of weighting coefficient yieldsrormalizing factoN=T,+T,.

3.3.4 DTW algorithm summary

After discussing all the constraints used in thtwky we can summarize the necessary
steps to implement DTW algorithm as follows:

1. Initial condition:

D(¢(1), #(1)) = A(4(1), 4(1))

Here we have to find a pair of values(l), ¢,(1)) within the boundary conditions to
get minimum accumulated distance. To find therogtistarting point, the complete

DTW algorithm needs to be run for every candidate @(1), 4,(1)). To reduce
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computation time, we implement a suboptimal proceda find the values a#(1) and

#/(1) by selecting the values that give a minimurtiahcondition, i.e.,

(4,(1), ¢, (1)) =arg min d(4,(1),¢,(1))

#x 0.9y @)

for 1<¢(1)<e and1<g(1)<e.

2. Implement DP recursion based on local contincatystraints and slope weighting:

D(i, —Li,)+d(i,.i,)
D(i,.i,)=min  D(i,i, - +d(i,.i,)
DG, -L1i, -1 +2d(i,.i,)

y
y

for g (1) <ix <Tx andg(1) <iy <T,.

3. Calculate time-normalized distance or accumdldistortion:

1 .
d(X,Y) =, min_D(#, (7)., (T)

for Ty-e< g(T)< TyandTy-e< g(T)< Ty.

3.4 Quantization

After performing speech recognition using DTW witherfect (nonquantized)
coefficients, we investigate the effect of quarttma on the speech recognition
performance. PLP coefficients, which are analogmu&PC coefficients, can lead to
unstable filters when they are quantized and atabtesfilter would cause large errors in
the PLP cepstrum, and probably speech recognitmorse For this reason, PLP

coefficients are converted into LSP coefficientiobe applying vector quantization.
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3.4.1 Line spectral pairs (LSP)

LSP is widely used in speech coding as a represemtaf the LPC parameters. LSP
encodes speech spectral information in the frequetamain, and it has better
characteristics than other LPC representations asadbAR (log area ratio) or PARCOR
(partial correlation). LSP and LAR are less séwsito small quantization errors than
PARCOR. Most recent speech coders use LSP instieB4R because interframe and
intraframe predictability of LSP can be used toucslthe bit rate or increase quality.
Suppose we have direct form LPC coefficieatsthen the transformation from LPC

parameters to LSP coefficients [21] is as follows:

A=) az"
P(2) = A(2)+ 2 "M A(zY)
Q(2)=A(2) -z "PA(ZY)
p, =arg(ootyP(z))), O<p, <«
q, = arg(rootyQ(2)), 0<q, <7

Some nice characteristics of LSPs are the following
1. Termsp, andq, alternate with each other, i.e.,
0 <p1<gi<p2<0<ps<n
2. Termsp, andq, are correlated with each other.
3. LSP coefficients have high correlation or chaslgavly from frame to frame.
The nice ordering and high degree of interframe amcaframe correlation can be
effectively exploited by a speech coder via predictquantization and vector

guantization, respectively.
3.4.2 Vector quantization (VQ)

Vector quantization is commonly used as a data cessmpn method in speech and
image coding. According to Gersho and Gray [22]) Maps &-dimensional vector in

vector spac®’ into a finite set ok-dimensional vectors=(y;; i=1,2,...N). Each vector
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yi is called a codeword or centroid vector, and theyde called the codebook with size
N. For example, consider the two-dimensional VQesysillustrated in Figure 12. Here
the two-dimensional space is divided into seveegians or cells, which are called
Voronoi regions. Every Voronoi region has one eealel, and every vector in the region

is assigned to the corresponding centroid.

codewords

‘N—\_\_\

% oronoi region

Figure 12: Two-dimensional space is divided intardhoi regions and every region is
represented by a codeword.

The first task in running the VQ algorithm is tosdg the codebook. Before discussing
how to design a codebook, two things need to beeaddd first, namely, the similarity or
distance measure and a centroid computation progedilihe distance measure used is
Euclidean distance of LSP coefficients, which soathe distance measure used for the
DTW algorithm. The centroid of each cell is conmgmliby summing all the vectors in the

corresponding cell and normalizing it by the numdfevectors in the cell, i.e.,

whereK is the number of vectors in the cell.
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The codebook design algorithm employed in this werlt binary splitting version of the
LBG algorithm, named after Linde et al. [15]. Tdlgorithm is implemented as follows:

1. Design a 1-vector codebodi<1) with centroidyy, i.e.,

wherev; is the training vector. Initialize the averagetalison valueD’ to an
arbitrarily large value.
2. Form=1,2,...N, split the centroid to double the size of the ¢, i.e.,

Y =Yn@d+e)
Yomen =Ym@—¢)

where g is 0.02 in this case. Also, the valueNbheeds to be updated tbl.2
3. Classify vectors using the nearest neighboditiom by assigning each training vector
into its associated centroid based on theiéeeh distance measure.

4. Update the centroid in each cell, i.e.,

whereK, is the number of vectors in the cell.
5. Compute the average distortion of the updatedeloookD using squared error

distortion measure, i.e.,

N Kp

D= ZZ(Vi(m) _ym)2

m=1 i=1
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Then computé=(D"-D)/D and seD'=D. If §is below a predetermined threshold,
then stop. If not, then repeat steps 2 to 4 tméilvalue ob is below threshold. The

value ofd is set to 0.001 in this case.
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4. EXPERIMENTAL RESULTS

The first experiment is to do speaker-independsaoliated digit recognition without any
guantization process. The test set consists ofuB2@ances from 10 men and 10 women.
The test set and the template set are completéfigreit; in other words, no overlap
between test files and reference files. The spbeandaries are manually corrected for all
experiments. At first, two templates per word ased to do recognition, i.e., the reference
template consists of 22 utterances for 11 digiss (for each digit). Half of those are
men’s utterances, and the other half are womenhhe accuracy of the speech recognition

system in the first experiment is 93.18%.

The recognition accuracy is somewhat low for regpligation and it is expected to

decrease further as quantization is inserted inéo dystem. However, as Hermansky
shows in his experiment of speaker-independenatisdl digit recognition, the accuracy
can be increased dramatically as the number ofltgagpper word is increased. Therefore,
we increase the number of templates per word to® 2. The recognition accuracy
reaches 95.91% and 97.73% for 9 and 12 templatesv@el, respectively. Hermansky

did experiments by varying the number of templates word from 2 to 23, and the

recognition accuracy’s range is from 92% to 98%urtlkermore, the results obtained in
this work are comparable to those of Hermanskyfsedrments.

Next, LSP coefficients are quantized and the codklsize is varied from 64 (six bits) to
256 (eight bits). The codebook is designed usimggtBG algorithm from a set of 792
utterances (36 men and 36 women). For all subs¢geeriments, nine and twelve
templates per word are used because the accuratye @ystem with two templates per
word is already too low and the quantization precetl decrease the performance further.
To further reduce the bit rate, PLP analysis isedewery 20 ms instead of 10 ms, which is
essentially down-sampling the speech pattern laceoff of two. Then the speech patterns
are linearly interpolated to get the original samgplrate before recognition is performed.
As LSP coefficients vary slowly from frame to franike distortion introduced by down-

sampling and interpolation operations is expectedoé small so the degradation in
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recognition accuracy is not significant. Experitseasing this scheme are also performed

without quantization and with quantization usingti eight bits.

Figure 13 shows the results of experiments disclsedar (excluding experiments using

two templates per word).

An infinite number ofsbitorresponds to no quantization

process.
100
---e--- 10 ms, 9 templates,
98 - . —m | —-m--10 ms, 12 templates
> 96 - 4 .4 | __a _10 ms (interpolated),
g l,f o A 9 templates.
§ 94 T— ------- - ,»‘:A"’ - 10 ms (interpolated),
< ,,;” 12 templates.
7.
92 ,_gf,~'
—” ~~’~'
90 [ I I 1
6 7 8 infinity
Number of bits

Figure 13: Recognition accuracy as a function ahber of bits

As expected, we can see from Figure 13 that thegreton accuracy declines as the
number of bits used in quantization decreases,p¢Xoe one case. The system with the
10-ms analysis step and 9 templates per word slodifferent behavior because 7-bit
guantization performs worse than 6-bit quantizatioRor all cases, 8-bit quantization
yields only slight degradation compared to the mangization scheme. The difference
between the results of 8-bit quantization and nantjaation is statistically insignificant

because the accuracies of 8-bit quantization systm still within the range of standard
deviation of the accuracies of systems without ¢jgation. For example, the accuracy of
a system with an interpolated 10-ms analysis step 12 templates per word is 96.82%
without quantization. Le® be the recognition accuracy aNdbe the total number of test

files; then the standard deviatietcan be calculated as follows:
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=0.9840

oo \/P(l— P) _ \/0.9682(1— 0.9682
R 220

A similar system quantized with eight bits yieldsaracy of 96.36%, which is still within
a range of 96.82 £ 0.9840 = [95.836, 98.804].

The last experiment is using 20-ms PLP analysis; ddewever, no linear interpolation is
involved in the speech recognition system. Bo#t &ad reference speech patterns have
20-ms analysis steps, so the number of computat®onsuch less than that of previous
experiments. The experiment is also carried oungud and 12 templates per word and by
varying the degree of quantization. Since muchrimftion is lost due to down-sampling,
the recognition accuracy of this system is infetebsystems in previous experiments using
the same number of templates per word. Withouhtizetion, the accuracy only reaches
93.18% and 95% for 9 and 12 templates per worgheatsely. For convenience, all
results of the experiments obtained in this wokktabulated in Table 2.

Table 2: The recognition accuracy of experimentis work.

Templates Analysis step Quantization

per word 6 7 8 Infinity
2 10 ms - - - 03.18
9 10 ms 93.18] 90.91 95.00 95.91
9 10 ms (interpolated) 91.82 91.82 94.09 95.00
9 20 ms 89.55| 91.82 93.64 03.18
12 10 ms 94,55 9455 97.2]7 97.73
12 10 ms (interpolated) 93.18 96.36 96.36 96.82
12 20 ms 91.36/ 93.64 94.09 95.00

The results of the experiments suggest that a gpedker-independent digit recognition
system can be developed using PLP analysis anD ¢ algorithm with a fairly low bit

rate. Of all experiments carried out in this wate system employing down-sample and
interpolation operations seems most promising3-bit quantization is used, the achieved
bit rate is only 400 bit/s. This number is muctvéo than the bit rate of the speech coder

used in wireless communication, which typically hadit rate of 4.8 kb/s to 8 kbl/s.
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Transmitting both CS-ACELP speech coder paramedads quantized PLP parameters
would require 8.4 kb/s, an increase of only 5% dkiernormal CS-ACELP bit rate.
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5. CONCLUSION AND FUTURE WORK

A speaker-independent isolated digit recognitiostay using PLP analysis and the DTW
algorithm has been examined in this work. Theesysts examined with and without
vector quantization. Vector quantization is usestéad of scalar quantization because
vector quantization gives lower distortion thanlacguantization for the same number of
bits. Based on the results of experiments, quattiz using eight bits or higher is
recommended since the degradation introduced imgreton performance is not

significant compared to the system without quatibtra

To minimize the bit rate further without degradiregognition performance, the analysis
step at the front-end processor is changed to 20 ise experiment shows that the
performance does not decrease substantially asagtigear interpolation is carried out at
the decoder. A big advantage of this system isvidrg low bit rate required to transmit

LSP coefficients; the bit rate is half that of ateyn with a 10-ms analysis step.

Although the performance of the recognition sysianthis work is fairly good, further
work is needed to determine the effect of a sp@ectker on the recognition system as a
speech coder is known to reduce the recognitionracyg slightly. According to [2] and
[3], extracting recognition features from synthesizpeech at the decoder rather than from
unquantized speech results in a WRA decrease f@av% to 95.16% and from 83.6% to
78.1%, respectively. The degradation is worse fifian introduced by quantizing LSP
coefficients. Therefore, it is probably betterdo recognition using the quantized LSP
coefficients rather than using the decoded speech.

Furthermore, a good endpoint detection algorithnedseto be incorporated into the
recognition system in this work. Using automaincigoint detection, the performance of
the system needs to be examined to determine whisi@ccuracy achieved in this work
changes significantly or not. In this work, no f#ate clustering was used to design the
reference templates. According to [1], templatning by clustering is necessary to

achieve high performance for practical tasks. Idetite effect of template clustering on
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the WRA in this work needs to be studied furth@nother important problem that needs
to be examined is the effect of the presence okdracnd noise on the recognition
performance. Finally, the accuracy of the systerthis work using the HMM recognition

algorithm is worth investigating since HMM is comniypused as a recognizer.
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