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Bayesian classifiers rely on models of the a priori and class-conditional feature distribu-
tions; the classifier is trained by optimizing these models to best represent features observed
in a training corpus according to a certain criterion. In many problems of interest, the true
class-conditional feature probability density function (PDF) is not a member of the set of
PDF's the classifier can represent.

This dissertation addresses this model mismatch problem. We formulate it as the problem
of minimizing the relative entropy between the true conditional probability density function
and the hypothesized probabilistic model. Based on this formulation, we provide a compu-
tationally efficient solution to the problem based on volume-preserving maps; existing linear
transform designs are shown to be special cases of the proposed solution. We apply this ap-
proach to automatic speech recognition (ASR) systems. We describe an iterative algorithm
to estimate the parameters of both a class of nonlinear volume-preserving feature transforms
and the hidden Markov model (HMM) that jointly optimize the objective function for an
HMM-based ASR system.

In the second part of this work we present a generalization of linear discriminant anal-
ysis (LDA) that optimizes a discriminative criterion and solves the problem in the lower-
dimensional subspace. We start with showing that the calculation of the LDA projection
matrix is a maximum mutual information estimation problem in the lower-dimensional space
with some constraints on the model of the joint conditional and unconditional PDFs of the
features, and then, by relaxing these constraints, we develop a dimensionality reduction ap-
proach that maximizes the conditional mutual information between the class identity and

the feature vector in the lower-dimensional space given the recognizer model.
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CHAPTER 1

INTRODUCTION

The first stage in many pattern recognition and coding tasks is to generate a good set of fea-
tures from the observed data. The set should be compact and capture all class-discriminating
information in case of recognition and all information needed to reconstruct the observed
data with sufficient quality in case of coding. Features that contain little or no information
should be avoided since they increase the computational load and the storage and transmis-
sion requirements without improving the performance. The features also should satisfy the
assumptions imposed on them by the recognizer or the decoder.

The purpose of this work is to construct acoustic features for automatic speech recognition
that are optimized based on certain information-theoretic criteria to achieve the goals of

compactness, discrimination, and satisfaction of the recognizer’s assumptions.

1.1 Automatic Speech Recognition

Many of the approaches presented here can be applied to any recognition or classification
problem, but we choose to test these approaches by applying them to the automatic speech
recognition problem.

The problem of automatic speech recognition (ASR) is the problem of generating the
text that corresponds to a given speech waveform. Our discussion of this problem will be
confined to the statistical approach, not only because it recognizes the probabilistic nature

both of the waveform we seek to process and of the form in which we should express the



results, but also because it is the most successful approach to the ASR problem up to now.
The statistical approach allows also a rigorous formulation of the feature design problems
and their solutions.

Current statistical speech recognition systems use many sources of information to ac-
complish their task. They use acoustic measurements usually at a fixed time-frequency
resolution. These measurements are used by the acoustic-phonetic model to achieve a map-
ping from the speech waveform to some phonetic units that represent the different kinds
of sounds that are encountered in a language. Other measurements like visual measure-
ments are sometimes used in addition to acoustic measurements to achieve this mapping.
In addition to these measurements, lexical information, and the likelihood of different word
sequences are also used to achieve this mapping and also the mapping of the phonetic units
sequence to a sequence of words.

Despite a great deal of success as indicated by current commercial products, current
systems have significant problems. These problems are caused by a number of different
factors, including coarticulation, change in speaking rate, speaker accent, and ambient noise
conditions.

In this dissertation, we will focus on the acoustic-phonetic part of the ASR systems.
More specifically, the dissertation focuses on the problem of acoustic representation of the
speech signal without any assumptions about the underlying probabilistic model. It could be
the traditional hidden Markov model (HMM), Bayesian networks, or any other probabilistic
model. However, our examples and experiments use the Gaussian mixture HMM as the
underlying probabilistic model. This is because no other model has provided significantly
better recognition results, and because we wish to compare our results with the best recog-
nition results achieved using HMM. As will be discussed later, the acoustic feature design
approaches proposed here may provide solutions to some of the problems that prevented the

extensive use of more sophisticated probabilistic models than HMM in speech recognition.



1.2 Feature Extraction for Speech Recognition

The term “features” is sometimes ambiguous specially in hybrid systems, where the output
of one system is fed as an input to the other system. To avoid this ambiguity, we always
mean by the term “features” in this dissertation the set of measurements estimated from
the speech waveform whose conditional probability density functions are modeled by ASR
systems to accomplish their recognition task.

The objective of speech signal analysis for ASR systems is to produce a parameterization
of the speech signal that reduces the amount of data that is presented to the speech recog-
nizer, separates all information relevant for the recognition task from irrelevant information
(e.g., speaker or channel characteristics), discriminates among different phonemes, and fi-
nally satisfies the ASR system’s assumptions. The principal assumption of most statistical
speech recognition systems is that the input features are approximately independent or at
least decorrelated given the values of some hidden variable. The importance of this assump-
tion is due to the extreme increase in the number of parameters required to model the joint
density of the features, if the features are not approximately independent or decorrelated.

Speech data can be parameterized in many different ways. The two main approaches are
some type of coding—usually linear prediction—of the time domain, and direct sampling
of domains other than the time domain, usually the frequency or cepstral domains [1]. In
both approaches, the input speech samples are windowed and the resulting speech segments
termed frames. The data analysis is then executed on each frame, which corresponds to a
single observation with regard to a hidden Markov model (HMM). Mel-frequency cepstrum
coefficients (MFCC) and perceptual linear prediction cepstrum coefficients (PLPCC) are the
current most successful features for speech recognition systems. Both were motivated by the
study of human speech production and perception [2]. They try to approximately separate
the linguistic information related to the vocal tract shape from other sources of variations

due to the excitation source that are speaker-dependent. They try also to use concepts based



on human speech perception like Mel-frequency scaling and critical band filters to simulate
the front-end of the human auditory system. Both use discrete cosine transform (DCT) to
generate the features because DCT approximates the Karhunen-Loeve transform (KLT) for
a first-order Gaussian-Markov random process. This means that, under the assumption that
frequency samples of the speech log spectrum are a first-order Gaussian-Markov random
process, the output coefficients are approximately decorrelated. Since speech is a continu-
ous signal that has continuity constraints due to the human speech production system, it
is not enough to represent it with a discrete sequence of features, and it is necessary to
include features representing the temporal correlation of the speech frames. This is usually
achieved by appending the delta and delta-delta coefficients to the cepstrum coefficients in
the feature vector. The delta coefficients are usually generated by implementing a difference
equation on the cepstral coefficients of a window of frames centered at the current frame.
The delta-delta coefficients are generated from the delta coefficients using the same method.
This standard feature vector is more compact and less sensitive to the excitation signal and
speaker variations than the speech waveform itself. There are also many techniques that fur-
ther reduce the sensitivity of cepstral coefficients to speaker variations like vocal tract length
normalization and speaker-adaptive training [3]-[5]. The sensitivity of cepstral coefficients
to environmental noise is an important subject of such extensive research that many impor-
tant speech conferences dedicate special sessions for it. The main reason of the difficulty of
this problem is that even simple additive noise in the time domain is combined non-linearly
with the speech signal in the cepstral domain. Even with these additional techniques for
speaker normalization and combating environmental noise, incorporating properties of hu-
man speech production and auditory perception is not necessarily the optimal approach to
feature extraction for speech recognition, as they do not achieve the goals of discrimination
and model satisfaction mentioned before. The feature vector based on cepstral coefficients
and their deltas completely violates the decorrelation assumption, as part of the feature

vector is an explicit function of the other part. They also completely ignore the need for



discriminative features that is essential for a pattern recognition system. There were recently
some attempts to address these problems and they will be described in detail in Chapter 2.
The main goal of this dissertation is to describe methods to improve the discrimination and
satisfaction of model assumptions by the acoustic features. These methods do not have the

limitations of previous methods.

1.3 Motivations of Data-Driven Acoustic Feature
Design For ASR

ASR in general and specially acoustic modeling of speech are well-studied problems, so
one may wonder whether any research for further improvement is required. Lippmann has
gathered in [6] machine recognition results on speaker-independent corpora and compared
them with human recognition results. Table 1.1 summarizes the characteristics of the corpora
and the corresponding results for human and machine.

The table indicates that humans are clearly superior to machines and the room for im-
provement is still wide. This indicates that the components of the current speech recognition
systems should be improved to get closer to human performance. When designing a ma-
chine learning system, there is always a trade-off between the complexity of the recognition
algorithm and the complexity of the feature extractor. In this work, we investigate the possi-
bility of improving the ASR systems by using more sophisticated feature extraction modules
without changing the recognizer complexity.

We will discuss briefly in the following the importance of designing acoustic features
whose true joint conditional probability density function (PDF) can be approximated well
by the recognizer, and of optimizing the features to discriminate among different phonemes.
Then, we will discuss the advantage of using class-dependent features instead of one global

feature vector for all speech units.



Table 1.1 Human versus machine speech recognition.

Corpus and Vocabulary | Recognition | Machine Human
Description Size Perplexity | Error (%) | Error (%)
TI Digits: Read Digits 10 10 0.72 0.009
Alphabetic Letters:

Read Alphabetic Letters 26 26 5 1.6
Resource Management:

Read Sentences 1000 60 3.6 0.1
(Word-Pair Grammar)

Resource Management:

Read Sentences 10000 1000 17 2
(Null Grammar)

Wall Street Journal:

Read Sentences 5000 45 7.2 0.9
North American

Business News: Unlimited 160 6.6 0.4
Read Sentences

Switchboard:

Spontaneous Telephone | 2000-Unlimited 80-150 38.5-43 4
Conversations

1.3.1 The model enforcement approach to acoustic feature design

An important goal for designers of ASR systems is to achieve a high level of performance
while minimizing the number of parameters used by the system, not only because a large
number of parameters increases the computational load and the storage requirements, but
also because it increases the size of the training data required to estimate the parameters.
One way of controlling the number of parameters is to adjust the structure of the conditional
joint PDF used by the recognizer. For example, the dimensionality of the acoustic feature
vectors in HMM-based ASR systems is too large for their Gaussian conditional joint PDFs
to have full covariance matrices. On the other hand, approximating the conditional PDF by

a diagonal covariance matrix Gaussian PDF is equivalent to assuming that the elements of



the acoustic feature vector are statistically independent given the HMM state. The use of
mixture of Gaussians relaxes this assumption, as it can be considered as a way of modeling
the correlations implicitly. However, the mixture of Gaussian components can model discrete
sources of variability like speaker variations, gender variations, or local dialect, but cannot
model continuous types of variability that account for correlation between the elements
of the feature vector. Examples of these continuous sources are coarticulation effects and
background noise. Clearly, modeling both continuous and discrete types of variability is
important to obtain good models of the speech signal. We present in this dissertation a
unified information-theoretic approach to the problem of designing features that satisfy a
given joint PDF model. We call this problem the model enforcement problem. We describe
the conditions under which the model enforcement approach can be reduced to maximum
likelihood estimation problem. We describe also the relation between this approach and
maximizing the conditional mutual information between the classes and the features given
the HMM model. We describe iterative algorithms to calculate nonlinear maps of the original
features to new features that satisfy better the model assumptions using either maximum
likelihood estimation or maximum conditional mutual information estimation. We provide

also a generalization of these algorithms to calculate class-dependent features.

1.3.2 Class-dependent acoustic feature design

In classification and recognition problems with many classes, it is commonly the case that
different classes exhibit wildly different properties. In this case it is unreasonable to expect
to be able to summarize these properties by using features designed to represent all the
classes. In contrast, features should be designed to represent subsets that exhibit common
properties without regard to any class outside this subset. The value of these features for

classes outside the subset may be meaningless, or simply undefined.



The class-dependent, features can be looked at as a method of dimensionality reduction
in classification [7], [8]. Unlike other methods of dimensional reduction, it can be defined in
terms of sufficient statistics and in such a way that result in no theoretical loss of perfor-
mance. There are two conflicting sources of loss of information necessary for classification
and recognition. The first is due to reducing the given data to a set of features, and the sec-
ond is due to approximating the true joint PDF's of the features. The former loss decreases
as the dimensionality of the features increases, while the latter increases as the dimension-
ality of the features increases. Class-dependent features avoid this compromise by allowing
more information to be kept for a given maximum feature dimension. This is clearly at the
expense of increasing the computational requirements of the system.

Phoneme-dependent feature design for phoneme classification is a well-studied approach
that is motivated by the fact that different phonemes have different salient characteristics
that may require different features. Using phoneme-dependent features not only simplifies
the features design problem but also allows the overall system to benefit from the ability
of these streams to reveal discriminant information of the speech signal. However, using
multiple observations in statistical speech recognition systems was not a possible attractive
choice one or two decades ago. The two main reasons for this fact are the computational
complexity and storage requirements associated with this approach, and the lack of a rigorous
formulation of how the use of these class-dependent features will integrate with the current
statistical approach for speech recognition.

Computational power has doubled roughly every 18 months since the late 1960s, and this
trend is expected to continue for more than 10 years. This increase in computing power makes
it feasible to move beyond the simple acoustic representation of speech in current recognition
systems. Many recent speech recognition systems combine multiple speech recognizers to
achieve more robustness and better performance. Using different feature streams within
each recognizer allows the overall system to benefit from the ability of these streams to

reveal complementary information of the original speech signal. Combination of multiple



recognizers is consistently reported to outperform baseline systems. In [9], for example,
a hybrid speech recognition system based on the combination of acoustic and articulatory
information achieved better word recognition results than the baseline systems. Choices of
the level of the combination and the best feature streams to be combined together remain as
main issues for successful combination. These choices are currently made through intuition
and empirical comparison.

The mathematical formulation for phoneme-dependent features in the weak sense within
the same statistical speech recognition systems was studied in [10], and recently in [11]. In
the weak sense, features have observable values for all classes, but the features and some
class variables are conditionally independent given a set of classes [12]. This increases the
computational and the storage requirements of the system, and results in the introduction of
meaningless models that degrade the performance of the recognizer. Features are said to be
class-dependent in the strong sense if they are assumed to be observable only for one class or
cluster of classes but undefined for the rest of the classes [12]. We will use here the notion of
class-dependent features for ASR to represent using different features for different phonemes
or different clusters of phonemes that are constructed using some criterion. In Chapter 2,
examples of previous attempts to use class-dependent features in the weak sense for speech
recognition will be provided. The important requirement to overcome problems in previous
formulations is to provide a mathematical framework describing the efficient integration of
class-dependent features in the strong sense with current speech recognizers. One of the
main goals of this dissertation is to provide a mathematical formulation and a practical
solution to this issue. In Chapter 4, two methods for class-dependent feature design for
pattern recognition are suggested: one to optimize a discriminative criterion, and the other
to maximize the likelihood of the training data. These methods are applied directly to the
hidden Markov model speech recognizer and require neither hierarchical and voting schemes
nor antiphoneme models that are usually used in previous multiple-observation systems. Ex-

periments presented in Chapter 4 show that systems trained using a discriminative approach



to develop class-dependent features outperform those trained using a maximum likelihood
criterion. This discriminative criterion can be achieved by minimizing an estimate of the
recognition error or maximizing an estimate of the conditional mutual information between

the class identity and the features.

1.3.3 The discriminative approach to acoustic feature design

There are two main categories of current discriminative approaches to the ASR problem.
The first is the model-based approach. In this approach, discriminative training algorithms
are used to estimate the parameters of the model. Important examples of these algorithms
are maximum mutual information estimation (MMIE) algorithms [13] based on an extended
Baum-Welch algorithm [14], and minimum classification error (MCE) algorithms based on
the generalized probabilistic decent (GPD) algorithm [15]. Clearly, the discrimination power
of the models generated using these approaches is limited by the discrimination power of
the features used. The second category takes advantage of this fact and therefore is feature-
based. Most of the algorithms that belong to this category are variants or extensions of linear
discriminant analysis (LDA) [16]. These approaches maximize the likelihood of Gaussian or
mixture of Gaussians models of the joint class-conditional PDFs of the feature vector in
the original feature space. The main advantage of these approaches is their computational
efficiency, but the results reported on their effect on the ASR system performance do not
show consistent improvement. After this brief introduction, we can emphasize that both
categories have severe limitations on their performance. Model-based approaches are limited
by the discrimination power of the features used, and feature-based approaches are limited
by being restricted to optimizing a nondiscriminative objective—namely likelihood.
In this dissertation, we first introduce a feature selection algorithm based on MMIE [17], [18],

and then describe a maximum conditional mutual information linear projection algorithm

that is based on a novel interpretation of LDA [19]. The main advantage of these approaches
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is that they maximize a discriminative criterion in the projected feature space instead of
maximizing the likelihood in the original feature space as in most previous feature-based
methods. In [17] and [18], maximization of mutual information between acoustic features
and phoneme identity or phonological features was used to select the acoustic features for
speech recognition. In both cases the improvement achieved by using this criterion was
marginal. This can be mainly attributed to the suboptimality of the algorithms used in
sequential feature selection. In [20], a linear transform is optimized to maximize the condi-
tional mutual information between acoustic features and phoneme identity given Gaussian
mixture models in the original feature space. No improvement in word error rate is achieved
compared to the baseline system. This can be attributed to the inefficiency of the approxi-
mate joint probabilistic models in the high-dimensional original feature space. We suggested
a method, [19], to calculate the conditional mutual information given a set of probabilistic
models in the low-dimensional projected feature space. We achieved significant improvement
in phoneme recognition accuracy using this approach over current LDA-based approaches.
This approach will be presented in Chapter 5. Compared to LDA-based approaches, this
proposed feature-based approach has three main advantages: optimizing a discriminative
criterion, the solution is based on modeling the joint conditional PDF of the features in the
lower-dimensional space, and using the model of these PDF's that are used by the recognizer.
The goal of training both the map parameters and the model parameters is to improve the
recognition accuracy, and both of them can be trained using the same discriminative training
algorithm. We devise methods for joint optimization of both types of parameters. These
methods are extensions to the existing MMI extension to the Baum-Welch algorithm [14],
and the MCE/GPD algorithm [15]. This joint optimization should, in principle, lead to
better performance, but at the expense of an increase in the computational complexity of

the algorithm.

11



1.4 (Goals and Accomplishments

This dissertation demonstrates how to optimize the acoustic features in statistical ASR. sys-
tems to satisfy the recognizer assumptions, and to increase its ability to discriminate among
phonemes. It demonstrates also how these optimizations can provide possible solutions to
some of the problems of current speech recognition systems. In this demonstration, we have
both theoretical and practical goals.

The first theoretical goal is to mathematically formulate the problem of model enforce-
ment and prove that it can be reduced to the problem of maximum likelihood estimation of
the parameters of a volume-preserving map of the features. We show also that optimizing
a map of the features to maximize the conditional mutual information given the recognizer
model is a special case of the model enforcement framework that we present. This equiv-
alence takes place when we try to improve the validity of our estimate of the a posteriori
probability using the recognizer’s probabilistic model. This goal requires definitions of the
criteria that can be used in optimizing the acoustic features to better satisfy the recognizer’s
assumptions in estimating the likelihood or the a posterior: probability. It also requires
definitions of the empirical estimate of these criteria. Once we have empirical estimates of
these criteria, optimization algorithms can be described to design the acoustic features. The
second theoretical goal is to provide as general a mathematical formulation as possible of
the problem of strong-sense phoneme-dependent feature design, or more generally strong-
sense cluster-of-phonemes-dependent features that are optimized for discrimination or model
enforcement. In this dissertation, we introduce a class-dependent acoustic feature design ap-
proach that can be integrated directly with any probabilistic model. This approach avoids
the need of having a conditional probabilistic model for each class and feature type pair.
This decreases the computational and storage requirements of speech recognizers based on
heterogeneous features. The third theoretical goal is to provide a new interpretation of LDA

based on a discriminative criterion to allow discriminative generalizations of LDA.
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The first practical goal is to provide iterative algorithms that solve these optimization
problems efficiently and to describe practical considerations that can decrease the compu-
tational complexity of these algorithms. The second practical goal is to describe iterative
algorithms to jointly optimize the parameters of the feature extraction module and the pa-
rameters of the recognizer using MLE, MMIE, and MCE. The third practical goal is to test
the approaches described in this dissertation and investigate the significance of the improve-
ment in recognition accuracy compared to speech recognizers using standard techniques.

The main accomplishment of this dissertation is the introduction of the unified feature
transformation framework for classification and recognition to satisfy a given probabilistic
model. Not only does this formulation explain the relation between many popular techniques
for data analysis and feature transformation in various disciplines like principal component
analysis (PCA), independent component analysis (ICA), and maximum likelihood linear
transform (MLLT), but it also allows the extension of these approaches to not-necessarily-
linear feature transforms. Motivated by computational efficiency, we described a nonlinear
volume-preserving features transform based on this framework. However, as the computa-
tional capabilities of computers increase with time, many other problem-dependent feature
transforms can be designed using our framework. An important accomplishment of this
dissertation is describing LDA, the popular technique for dimensionality reduction in classi-
fication and recognition, as a special case of maximizing the conditional mutual information
between the features vector and the class identity given the classifier’s probabilistic model.
By relaxing the assumptions needed for the equivalence of the two approaches, we achieve

several possible discriminative generalizations of LDA for dimensionality reduction.

1.5 Organization of the Dissertation

In this section, we review briefly the organization of this dissertation. This review may help

readers with different backgrounds to focus on different parts. The dissertation is divided
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into six chapters. Chapter 1 states the problems to be solved and discusses their importance.
It provides also motivations for the approaches presented in the dissertation.

Chapter 2 gives a brief survey of previous work related to our approaches. It starts with
a very brief introduction to the history of statistical ASR systems, and the current most
widely used features for ASR systems in Sections 2.1 and 2.2, respectively. In Section 2.3,
a brief review of previous transformations for approximate normality is provided. Then, we
focus on previous work on developing features that can be better modeled using mixture
of Gaussians with diagonal covariance matrices in Section 2.4. We also describe the most
important ASR systems that used multiple observations in Section 2.5. Finally, discriminant
analysis approaches to feature design for ASR systems are provided in Section 2.6.

In Chapter 3, we start with a brief overview of the parametric approach for statistical clas-
sification and recognition in Section 3.1. A summary of limitations of previous approaches is
given in Section 3.2. In Section 3.3, the unified feature transformation framework to decrease
the mismatch between the joint PDF of the features and its model used by the recognizer is
introduced. Then we provide some approaches based on this framework. First, a theoreti-
cal formulation of the nonlinear independent component analysis approach is introduced in
Section 3.4 to solve the problem due to the diagonal-covariance assumption in ASR systems.
An algorithm that uses this formulation for speech processing is described also in Section
3.4. A new formulation of the same approach based on MLE is introduced in Section 3.5. An
application of the approach to large-vocabulary speech recognition is introduced in Section
3.6. The choice of using global or class-dependent maps is discussed in Section 3.7.

Chapter 4 discusses the strong-sense class-dependent features approach. It starts with
a brief introduction to previous approaches to class-dependent features in ASR in Section
4.1. In Section 4.2, the problem of using strong-sense class-dependent features in statistical
classification or recognition systems is formulated. A maximum likelihood approach is de-
scribed in Section 4.3. Finally, discriminative strong-sense class-dependent features design

is introduced in Section 4.4.
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Chapter 5 discusses discriminative dimensionality reduction and feature selection tech-
niques. It starts with a description of an algorithm for feature selection based on MMI in
Section 5.1. This algorithm is applied to features selection for phoneme recognition in Sec-
tion 5.2. Then, an interpretation of LDA using a constrained maximum conditional mutual
information projection is provided in Section 5.3. In Section 5.4, implementation of the max-
imum conditional mutual information projection approach is described. Finally, a summary
and future work directions are described in Chapter 6.

In this dissertation, a superscript is used as an index of a realization of the random vector.
Capital letters are used to denote the random variables and the corresponding small letters
to denote their realizations. Both vectors and matrices are in boldface to be distinguished

from scalars.
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CHAPTER 2

BRIEF OVERVIEW OF RELATED WORK

This chapter provides examples of the most important research related to the goals of this
dissertation. It starts with a glimpse of the history of ASR systems and a quick introduction
to the most important acoustic features used in current ASR systems. Then, we provide
examples of previous work in statistical analysis on using feature transformation to generate
features that satisfy approximately the normality assumption in Section 2.3. In Section 2.4,
important previous solutions to the problem of using diagonal-covariance Gaussian mixture
conditional PDFs in ASR systems are described. In Section 2.4, we show how the most
significant previous attempts to use class-dependent observations in ASR systems were for-
mulated. Finally, we describe important approaches to dimensionality reduction in feature

extraction for ASR systems in Section 2.5.

2.1 Statistical Approaches to ASR Modeling

Early ASR systems were inspired by advances in artificial intelligence (AI) [2]. These systems
relied on sets of rules for acoustic-phonetic modeling and language modeling. These systems
were knowledge-based systems that used the experiences and knowledge of spectrogram
readers, and psychoacoustics. They worked reasonably well for small tasks under controlled
environments. The performance of such systems was found to be fragile [2]. Then, stochastic
approaches were introduced to both the acoustic-phonetic and language modeling. These

stochastic approaches brought the rich mathematical basis that was available in statistical
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pattern recognition literature to ASR [21]. In current ASR systems, the acoustic-phonetic
modeling is mainly based on hidden Markov models (HMM) [22], or hybrid systems like
artificial neural networks and HMM (ANN/HMM) [23], and the language models are in the
form of N-grams which are trained using a large text corpus [24]. Stochastic techniques
typically use minimal a priori assumptions about the nature of the problem. They estimate
the parameters of the model directly from the data. This statistical approach improved the
quality of ASR systems significantly and extended their applications to new areas. However,
applying statistical approaches to the feature extraction module was very limited and did

not have the same tremendous impact, as will be discussed in the next section.

2.2 Current Feature Extraction Module in ASR
Systems

Most acoustic features that have been successful in speech recognition try to model the speech
signal as the convolution of the excitation signal and the vocal tract transfer function, and
try to extract the vocal tract transfer function characteristics by linear predictive coding or
homomorphic signal processing. There are a large number of studies in the literature which
describe and compare various feature extraction algorithms for speech recognition; [25]-[29]
are just a few examples.

Over the past few decades, many variants of filter banks, LPC, and cepstral vectors have
been used for speech recognition. The majority of the systems have converged to the use of
cepstral vectors derived from a filter bank that has been designed according to some model
of the auditory system. This model takes into consideration that human speech perception
follows a nonlinear frequency scale named the Mel scale, and that the perception of a certain
frequency component is affected only by the presence of energy in neighboring frequencies
within what is called the critical band. Therefore, a filter bank with center frequencies that
are chosen according to the Mel scale is used. Psychoacoustic experiments using simultaneous

frequency masking have revealed that the bandwidth of the critical bands increases with
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the center frequency. Therefore, the filter’s bandwidth is increased as its center frequency
increases.

In many speech parameterization schemes, such as filter bank data obtained by sampling
the short-time Fourier spectrum (STFS), nearby frequencies within the same observation
vector are highly correlated. This is inconsistent with using diagonal-covariance Gaussian
mixtures in HMM speech recognizers. To decrease this correlation, cepstral coefficients ob-
tained by taking the inverse Fourier transform of the log of the Fourier transform of the
data are used instead of straight filter bank data. This decreases the correlation between the
individual parameters of a single observation frame, fitting the data more closely to the di-
agonal covariance assumption. It was proved that for a first-order Gaussian-Markov random
process, the DCT transform approximates the KLT transform [1]. As described in Chapter
1, the delta and delta-delta coefficients are usually appended to the cepstrum coefficients
to account for temporal correlation among frames of speech. Despite the widespread use
of the cepstrum coefficients as the features for speech recognition, the method used to get
these features is completely heuristic. Also, there is no reason to believe that delta and
delta-delta coefficients added to the cepstrum coefficients are the optimal features to model

the temporal correlation of speech frames.

2.3 Transformations for Approximate Normality

Many important results in statistical analysis and pattern recognition follow from the as-
sumption that the population being sampled or investigated is normally distributed. The
assumption of normality is seriously violated in many interesting problems. A frequently
discussed solution in the statistical literature is to transform the original measurements to
features that better satisfy the normality assumption. In this section, we will give very brief
examples of previous approaches to transform multivariate data such that this assumption

is better satisfied.
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The transformation may be based on theoretical considerations or use a data-driven
approach. Univariate examples of the former type are the logistic transformation for binary
data [30] and the variance stabilizing transformations for the binomial, the Poisson, and the
correlation coefficient [31].

There are many examples of data-driven transformations. Tukey introduced a family
of power transformations such that the transformed values are a monotonic function of
the observations over some admissible range for univariate analysis [32]. This family was
modified in [33], where maximum likelihood and Bayesian methods were used to estimate
the transformation parameter. These power transforms were extended to the multivariate
case by using a number of scalar transforms equal to the dimension of the observation
vector in [34]. Conceptual and computational simplicity were the main reasons to limit the

suggested transforms to a family of power transforms.

2.4 Transformations for Redundancy Reduction

As described in Chapter 1, one way of controlling the number of parameters is to adjust the
structure of the covariance matrices used by the recognizer. Traditionally, the choice is made
between either diagonal or full covariance matrices. Full covariance is an impractical choice in
many applications, and diagonal covariance degrades the performance of the recognizer [35],
as the acoustic features used in ASR systems are not decorrelated. Recent approaches to
this problem that offer new alternatives can be classified into two major categories. The first
category tries to decrease the number of parameters required for full covariance matrices by
tying the parameters of the unitary eigenvectors matrix that can map any covariance matrix
to a diagonal matrix, using the fact that the covariance matrix is a symmetric nonnegative
definite matrix that can be diagonalized using a unitary transform. In other words, this
category tries to reduce the redundancy in the model parameters. The second category

chooses to decorrelate the features or map them to approximately independent features that
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can be modeled by a diagonal covariance. In other words, this category tries to decrease the
redundancy in the features themselves. In this section, we will describe both approaches and

give several examples of each approach.

2.4.1 Redundancy reduction of the model parameters

There are a variety of choices for covariance structure other than diagonal or full. Two
examples that can be used in ASR systems are block-diagonal [36] and banded-diagonal
matrices. Another method often used by ASR systems is tying, where certain parameters
are shared among a number of different models. Accordingly, various matrix decomposition
methods of the form C = ATDA, where D is a diagonal matrix and A is a unitary matrix,
have been applied to covariance matrices along with different styles of partial parameter

tying [37].

2.4.1.1 Semitied covariance matrices

In [37], the semitied covariance matrices approach is introduced. It estimates a transform
in a maximum likelihood fashion given the current model parameters. This optimization
is performed using an iterative scheme that is guaranteed to increase the likelihood of the
training data. An iterative algorithm based on the expectation-maximization algorithm that
calculates a linear transform that diagonalizes the covariance matrix of the Gaussian compo-
nents of each state is provided. Instead of having a covariance matrix for every component

in the recognizer, each covariance matrix consists of two elements, a component-specific di-

agonal covariance element, ngz)g, and a semitied class-dependent nondiagonal matrix H(,
such that

s(m) — g g1

diag )

where m is the Gaussian component index and r is the state index. It was shown that

the word error rate decreased from 9.2% to 8.12% on the 1994 ARPA Hubl Database [37].
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The iterative algorithm used in the semitied covariance matrices approach required solving
a nonlinear optimization problem for each iteration. In [38], a solution of this problem is

provided by enforcing the matrix H(") to be a unitary upper-triangular matrix.

2.4.1.2 Factor analysis approach

Factor analysis uses a small number of parameters to model the data in a high-dimensional
space. It is a linear Gaussian model that assumes the observed feature vector is related to
a set of independent latent variables (factors) by linear transformation, with additive inde-
pendent white Gaussian noise added to the output of the transformation. It was used in [39]
to model the covariance matrix of each Gaussian component of the Gaussian mixture used
within each state of the HMM recognizer. The parameters of the factor analysis model were
derived using an expectation-maximization to maximize the likelihood and using gradient
based method to minimize an empirical estimate of the recognition error as in [40]. We will

discuss it in more detail in Chapter 3.

2.4.2 Redundancy reduction of the features

In these approaches, the original feature space is transformed to a new feature space that
satisfies the diagonal-covariance models better. This is achieved by optimizing the trans-
form based on a criterion that measures the validity of the assumption. All these methods
used linear transforms and tried to solve the problem due to the diagonal covariance as-
sumption only. In Chapter 3, we will introduce a framework that allows using a nonlinear

transformation and can deal with any assumptions by the probabilistic models.

2.4.2.1 Principal component analysis

Principal component analysis [16] and the closely related Karhunen-Loeve transform are clas-

sic techniques in statistical data analysis, feature extraction, and data compression. Given a
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random vector X and a number of observations from this random vector, no explicit assump-
tions on the probability density of the vectors are made in PCA, as long as the first- and
second-order statistics can be estimated from the observed data. Also, no generative model
is assumed for the vector X, but there are extensions to PCA like probabilistic principal
component analysis (PPCA) [41] and the approach in [42] that associate a generative model
with PCA. In the PCA transform, the vector x of length n is first centered by subtracting
its mean. Next, x is linearly transformed to another vector y with m elements, m < n, so
that the redundancy induced by correlation is removed. This is done by finding a rotated
orthogonal coordinate system such that the elements of x in the new coordinate system
become uncorrelated. The vector is projected in this new coordinate system to the subspace
that consists of the directions along which the vector has maximum variance. The trans-
form is constructed from the eigenvectors of the sample covariance matrix with maximum
corresponding eigenvalues. This transform is the unique unitary transform of dimension m
such that the elements of y are uncorrelated and the variance of y is maximized. PCA is
a linear technique, so computing y from x is not computationally expensive, which makes
real-time processing possible. Since there are many sources of variability in speech features
and some of them are irrelevant to linguistic information, selecting the direction of maximum
variance for projection does not always minimize the recognition error [43]. Therefore, PCA
was mainly used in speech parameterization to calculate the principal components of the

Fisher covariance matrix of the classes corresponding to the speech units [44], [45],

Swy = W'B, (2.1)

where W is the matrix of the mean of the within-class variance, and B is the matrix of the
variance of the means of the classes [16].
A state-specific rotation approach was introduced in [35]. It calculates the full covariance

matrix for each state in the system. All data from that state is then decorrelated using the
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eigenvectors matrix corresponding to the estimated covariance matrix. Multiple diagonal
covariance matrix Gaussian components are then trained for each state. In other words, it

is a state-specific PCA of the acoustic features.

2.4.2.2 Independent component analysis

ICA defines a generative model for the observed multivariate data [46], [47]. This data
is typically given as a large database of samples. In the model, the data variables are
assumed to be linear mixtures of some unknown latent variables, and the mixing system is
also unknown. The latent variables are assumed non-Gaussian and mutually independent,
and they are called the independent components of the observed data. These independent
components, also called sources or factors, can be found by ICA.

ICA can be seen as an extension to principal component analysis and factor analysis.
ICA is a much more powerful technique, however, capable of finding the underlying factors
or sources when the assumptions assumed by these classic methods are not valid.

The goal of ICA is to estimate the independent sources and the mixing coefficients given
only observations that are a linear mixture of the latent independent source signals. In con-
trast to PCA, ICA not only decorrelates the sources but also reduces higher-order statistical
dependencies, attempting to make the components as independent as possible.

The data analyzed by ICA could originate from many different kinds of application
fields, including digital images and document databases, as well as economic indicators and
psychometric measurements. In many cases, the measurements are given as a set of parallel
signals or time series; the term blind source separation is used to characterize this problem.
Typical examples are mixtures of simultaneous speech signals that have been picked up
by several microphones, brain waves recorded by multiple sensors, interfering radio signals
arriving at a mobile phone, or parallel time series obtained from some industrial process.

There are many approaches to solving the ICA problem, including information maxi-

mization approach, maximum likelihood estimation, negentropy maximization, higher-order
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moments and cumulants approximations of differential entropy, and nonlinear PCA. In [48],
it is shown that all these different approaches lead to the same iterative learning algorithm.

ICA has been used in speech recognition applications when there is a background auditory
source other than the speaker, [49], [50]. It was used also in developing features for speaker
recognition [51] and speech recognition [52]-[54]. Factor analysis also was used to model the

covariance matrix of the Gaussian mixtures of HMM recognizers in [39].

2.4.2.3 Maximum likelihood linear transformation

The maximum likelihood linear transform (MLLT) was introduced in [55]. It is based on
the idea that the diagonal covariance models impose a constraint on the likelihood of the
features which results in underestimating its value, and by trying to maximize the value of the
likelihood by the introduction of a linear transformation of the data, we will get features that
are better represented by the model. In [56], heteroscedastic discriminant analysis (HDA)
made no improvement in word recognition, but made a significant improvement when used in
combination with MLLT. We will describe the HDA transform in Section 2.5. In [57], MLLT
was used also after HDA and improved the word recognition error by 10-15% relative to the
original results. The nonlinear independent component analysis introduced in Chapter 3 can
be shown as a generalization of the MLLT to nonlinear transforms. This is due to the fact
that the empirical estimate of the objective function to be minimized in our work is actually
the negative of the empirical estimate of the likelihood in MLLT approach. The proof will be
provided in Chapter 3 and is based on the equivalence of minimizing the mutual information
of the output components and maximizing the likelihood of the outputs under the statistical

independence assumption.
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2.5 ASR Systems with Class-Dependent Features

The approach of using class-dependent features in speech recognition and verification has
been suggested many times before [58]. Its main problem, due to the statistical nature of the
recognizer, was how to compare a posteriori probabilities conditioned on different sets of fea-
tures to decode a given utterance. Actually, the number of papers that ignored this problem
and used class-dependent features with statistical recognizers is really surprising [59]-[63].
However, there were many suggestions recently to solve this problem. The approaches can
be classified as model-based approaches and feature-based approaches. In model based ap-
proaches, the problem was solved by completely abandoning the statistical structure of the
recognizer, or by adding extra reference models that have no physical meaning but are
used to normalize the likelihoods to be comparable statistically. The feature-based approach
restricted the class-dependent features to features generated by class-dependent linear trans-
forms from an original set of features. In the following, we introduce brief examples of both

approaches.

2.5.1 Model-based approaches

To avoid the problem of having to compare likelihoods based on different observation spaces,
many researchers [58] suggested using hierarchal approaches for recognition or verification.
The author of this dissertation [64], for example, proposed clustering the phonemes of the
language to a certain number of clusters, and then building HMM models for these clusters.
These models are then used in an HMM-based verification system to verify that the correct
sequence of clusters was pronounced. If the utterance passes this test, another test verifies
that the correct phoneme of each cluster was pronounced based on a cluster-specific set of
features. However, hierarchal systems added complexity to ASR systems, and their perfor-
mance was worse than purely statistical approaches like HMM-based systems. They also

have the implicit unjustified assumption that features at a certain level are independent of
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classes and features at lower levels given the value of the cluster at this level. Other systems
just used likelihoods based on different observations, ignoring that these likelihoods cannot
be compared together [59]-[63]. This problem was addressed for segmental ASR systems
that use different set of features for different segments in [10]. This class of recognizers pro-
cesses the speech frames to produce a segment-based network and represent each segment by
fixed-dimensional features. In such a feature-based recognizer the observation space takes
the form of a temporal network of feature vectors, so that a single segmentation of an utter-
ance will use a subset of all possible feature vectors. This approach was motivated by the
ability to incorporate knowledge of the speech signal by using these different sets of features.
This approach was used in the SUMMIT speech recognizer developed by the Spoken Lan-
guage System Group at MIT [62]. In [10], a probabilistic framework for this recognizer was
provided. This framework was motivated by the need to account for incomplete knowledge
in the system. This probabilistic framework will be discussed in Chapter 4. It introduced
the notion of antiphone to model all the segmentations of the utterance that compete with
the segmentation corresponding to the phonetic units. This results in replacing the likeli-
hood estimation by estimating the likelihood ratio of the features given the phone and the
antiphone, respectively. The main problem with this approach is how to train the antiphone
models. They are synthetic entities that have no physical meaning at all, so there have been
a variety of suggestions to train these models. They range from taking all other phones in
the phone set to train the antiphone model to taking a very small set of similar phones in the
phone set. By the introduction of these synthetic models, statistical ASR systems can—at
least theoretically—deal with class-dependent features in the weak sense described before.
Many discriminative training algorithms [65] for HMM parameters for speech recognition
used the likelihood ratio of the sequence of phones and their corresponding antiphone as the
objective function to be maximized instead of traditional maximum likelihood approach [66].
In [67], an extension of the Baum-Welch algorithm to class-dependent features was intro-

duced. The development was based on a statistical hypothesis testing approach. However,
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it replaces the antiphone models requirement by a noise-only model. Then, the likelihood
is replaced by the likelihood ratio of the phoneme sequence and the noise-only model. The
relation between maximizing the new likelihood function, and the original likelihood func-
tion is provided there, but this framework has not solved the main problems of the previous
methods which is the definition of this noise-only model, and how well we can approximate

the PDF of these class-dependent features under this noise-only hypothesis.

2.5.2 Feature-based approaches

The relation between the likelihood of the features and the likelihood of the new features
generated by class-dependent linear transformation of the original features was described
in [55]. The class-dependent linear transformations were estimated by maximizing the like-
lihood of the original features. In [11], class-dependent subspace projection of the features
for ASR systems was suggested. The problem of likelihoods based on different projections
was approached by ensuring that all the feature transforms span the same original feature
space. This was achieved by defining clusters of classes and defining a common PDF shared

by all members of the class over the complement of the projection subspace.

2.6 Dimensionality Reduction Techniques

To achieve high recognition accuracy, the feature extractor is required to capture salient
characteristics suited for discriminating among different classes. Therefore, the linear dis-
criminant analysis (LDA) approach was borrowed from statistical pattern recognition tech-
niques [16] and applied to ASR systems. Recently, discriminant analysis approaches are
generalized to more powerful techniques and tailored specifically to the ASR problem. Al-
though using a specific discriminant analysis technique for feature extraction in ASR systems

is not an agreed-upon issue now, there are a growing number of ASR systems that use dis-
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criminant analysis in their feature extraction module. In this section, we will introduce

briefly the most important techniques.

2.6.1 Linear discriminant analysis

The linear discriminant analysis (LDA) technique tries to improve the separability of the
classes by finding the linear transform that maximizes the ratio of the determinant of
between-class covariance and the determinant of the average within-class covariance [16].
Given a set of NV independent observation vectors {x;}1<i<n,X; € RN, each of them belongs
to only one class j € 1,---,.J. Let each class j be characterized by its sample mean p;,
sample covariance matrix X;, and observation count /N;. The within-class scatter is given

by

1 J
= < z:: (2.2)

and the between-class scatter is given by

J
1
- NZ ity = hp (23)

where p is the global mean of the observations. The goal of LDA is to find a linear trans-

formation characterized by the matrix # such that

oBo" |
J (6 ‘7 2.4
O = owe] 2.4)
is maximized. The maximization can be formulated as principal component analysis of the
Fisher covariance matrix or as a maximum likelihood estimation problem [68].

To obtain features suitable for syllable classification, Hunt proposed the use of linear dis-

28



criminant analysis (LDA) to derive features that improve the separability of the models of
syllables [69]. Brown, almost a decade latter, experimented with both principal component
analysis (PCA) [16] and LDA to project the features in subspaces of reduced dimensions [70].
His experiments showed that the LDA transform is superior to the PCA transform. He in-
corporated context information by applying LDA on an augmented feature vector formed by
concatenating the features from a number of frames around the observation vector. By doing
so, context is incorporated selectively based on the best linear combination of observation
vectors, and thus all the components of the feature vector are likely to contribute to better
classification. LDA has been employed successfully to reduce the feature dimensions from
high-dimensional acoustic representations for speech recognition [29]. In [45], using PCA
analysis had no effect on the phoneme classification task on OGI numbers database. LDA
improved the phoneme classification on the same task by 0.7%. Since the LDA solution is in-
sensitive to any nonsingular linear transforms before it, many researchers suggested removing
the discrete cosine transform from the calculation of the cepstral coefficients and replacing
it with the LDA transform [56], [71]. However, this replacement gave no improvement in
word error rate in [71]. On the other hand, removing the Mel-scale filter bank stage from
the feature extraction module gave 1% improvement in the word error rate, when LDA and
a maximum likelihood diagonalization transform were used. LDA has been applied to dis-
crete [72] and continuous [45] HMM speech recognition systems. Applying LDA to mixture
of Gaussians HMM is more complicated than the discrete density HMM as there are many
choices of the sample class assignment. Various techniques for class assignment have been
proposed and used with different degrees of success with continuous density HMMs [73]-
[75]. Adaptive forms of LDA have also been proposed with encouraging results, taking into
account mismatch between the assumed class distributions and the actual data [76]. De-
spite its popularity and promise for significant improvements to speech recognition, LDA
has not always improved the performance of speech recognition systems. This is due to lack

of robustness in the widely used model-free formulation of LDA. In the original Fisher-Rao
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model-free formulation [16], LDA projections are best suited to classifier models where class
distributions have equal variance. LDA’s assumption that all the within-class covariance ma-
trices are approximately the same, makes it inappropriate for problems of unequal covariance
classes like speech recognition. It has improved the performance on small vocabulary tasks,
but the results were not conclusive for large vocabulary phoneme-based systems [77], [78].
Campbell [79] has shown that linear discriminant analysis is related to the maximum
likelihood estimation of parameters for a Gaussian model, with a priori assumptions on the
structure of the model. The first assumption is that all the class discrimination informa-
tion resides in a p-dimensional subspace of the n-dimensional feature space where the LDA
mapping is represented by p X n matrix. The second assumption is that the within-class
variances are equal for all classes. Hastie and Tibshirani [80] further generalized this result
by assuming that class distributions are a mixture of Gaussians. However, the constraint
of common covariance matrices is maintained in both [79] and [80]. Kumar [68] generalized
LDA to the case of classes of different covariance matrices and referred to this generalization

as heteroscedastic discriminant analysis (HDA).

2.6.2 Heteroscedastic discriminant analysis

Heteroscedastic discriminant analysis (HDA) is an extension to LDA that removes the equal
covariance constraint [68]. HDA was first formulated as a maximum likelihood estimation
problem for normal populations with common covariance matrix in the rejected subspace.
An alternative interpretation of HDA as a constrained maximum likelihood projection for a

full-covariance Gaussian model is introduced in [56]. It maximizes the objective function

0By |

J(0 .
) [T, 16=,67|™

(2.5)
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In [56], HDA made no improvement in word recognition, but made a significant improvement
when used in combination with MLLT. In [57], HDA combined with MLLT were reported to
improve the performance over MFCC by 10-15% relative on large vocabulary conversational
speech tasks using Voicemail and Switchboard databases. It was noted in [11] that MLLT
is a special case of HDA when the dimension of the generated feature vector equals the

dimension of the original feature vector.

2.6.3 Information-theoretic approaches

Extracting linguistic information related to speech recognition based on a given probabilistic
model can be achieved by using information-theoretic measures like mutual information
between the classes and the feature vector as the criterion to be optimized by the features.

An approach for selecting the level of the combination of several speech recognizers based
on conditional mutual information of the feature streams given the underlying phoneme
identity was suggested in [81]. In [82], the mutual information was used to estimate the
distribution of partial phonetic information in the time-frequency plane relative to acoustic
landmarks. A framework for defining the theoretically optimal method for feature subset
selection was presented in [83]. It proves that for a feature to be unnecessary to model a
certain property, it should have a Markov blanket within the complete feature set. However,
this optimal feature selection approach is computationally intractable. In [17], the speech
signal is modeled as a combination of independent phonological factors. These phonological
factors are represented by the best fixed-length subset of the available acoustic feature space.
An algorithm that calculates a good approximation of the acoustic features subset that has
the maximum mutual information with each phonological factor is presented in [17]. The
algorithm was applied to maximize the mutual information of the feature vector with the

phoneme identity in [18].

31



An expression of the mutual information between the features and the class identity was
used to learn a discriminative linear feature transform in [20]. It was based on Renyi entropy
and nonparametric Parzen estimates of the the conditional PDF's of the features. The use of
Renyi entropy was motivated by computational efficiency. An implementation that assumes
a Gaussian mixture model of the PDF's in the original feature space was also introduced.
No improvement in the word error rate on the AURORA?2 task [84] is achieved by using this

approach compared to the baseline system.
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CHAPTER 3

THE MODEL ENFORCEMENT APPROACH

Given a set of realizations of a random vector and a hypothesized model of its probability
density function, the purpose of this work is to find a transform of this random vector and a
set, of model parameters that jointly minimize an empirical estimate of the relative entropy
between its true probability density function and the hypothesized model. The first stage
in many pattern recognition and coding tasks is to generate a good set of features from the
observed data. The set should be compact and capture all class discriminating information.
This set of features is usually chosen based on the available knowledge about the problem, or
based on data-driven approaches to achieve compactness and discrimination goals. In both
cases, the features also should satisfy the assumptions imposed on them by the recognizer
or the decoder.

Statistical pattern recognition and classification systems are based on the assumption that
the conditional probability density functions of the features can be approximated. Many
probabilistic models in statistical recognition and classification systems approximate the
features’ joint PDF by a Gaussian PDF or a mixture of Gaussian PDF's. Since the measure-
ments are not necessarily jointly normal, power transforms are used in statistical analysis
to get features that better satisfy the normality assumption [34]. Moreover, in many high-
dimensional applications, the values of the correlation between different features are ignored.
This is achieved by assuming that the observations are conditionally independent given some
intermediate class label (e.g., given the Gaussian component label in a diagonal-covariance

Gaussian mixture model [85], or given the class label in a naive Bayes classifier [86]). The
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computational efficiency requirements often motivate this assumption, although it is known
to be unjustified in many applications of interest, e.g., in speech [35], image [87], and text [86]
applications. This makes the problem of finding the features that are best represented with
these models equivalent to the problem of finding the conditionally independent components
of the original features for each one of these intermediate class labels. Previous approaches to
this problem formulated it as a redundancy reduction problem that can be solved by using
a more relaxed model or by using a linear transform of the data. In [88], we formulated
the problem as a nonlinear independent component analysis (NICA) problem. We showed
that using the features generated using NICA in speech recognition increased the phoneme
recognition accuracy compared to the baseline system and compared to systems that used
linear transforms like linear ICA [47], linear discriminant analysis (LDA) [16], and maximum
likelihood linear transform (MLLT) [55]. We showed also that the NICA algorithm described
in [88] can be formulated as a generalization of the MLLT.

In this chapter, we will introduce a unified information-theoretic approach to feature
transformation that makes no assumptions about the true probability density function of the
original data and can be applied for any probabilistic model with arbitrary constraints. Both
power transforms and redundancy reduction approaches can be formulated as special cases
of what we call a model enforcement approach: the model enforcement approach estimates
a nonlinear transform and the parameters of the probabilistic model that jointly minimize
the relative entropy between the true joint features PDF and its hypothesized model.

In the next section, we will give a brief overview of parametric approaches for Statistical
modeling. We will describe the main problems with previous approaches to redundancy
reduction techniques and transformation for normality in Section 3.2, then we will formulate
the model enforcement problem and provide a unified feature transformation framework that
has most previous approaches as special cases of it in Section 3.3 [89]. Then, we apply this
framework to extend ICA to the case of nonlinearly mixed sources in Section 3.4 as presented

in [88]. An iterative algorithm is described also in Section 3.4 to estimate features for ASR
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based on nonlinear ICA. In Section 3.5, we describe a special case of the model enforcement
problem that reduces to a maximum likelihood estimation of the parameters of a volume-
preserving transform and the model. In Section 3.6, a large-vocabulary conversational speech
recognition application of the algorithm discussed in Section 3.5 is introduced. Finally, in
Section 3.7 the level at which this technique for feature transformation is applied in ASR

systems is discussed.

3.1 Parametric Approach for Statistical Modeling

Bayes rule is the optimal classification rule if the underlying distribution of the data is known.
In practice, we do not know the underlying distribution. There are two main approaches to
this problem: parametric and nonparametric [16]. In nonparametric approaches like kernel-
based approaches the decision boundaries between the classes are estimated directly instead
of trying to estimate the conditional density of the classes while parametric approaches
estimate a parametric model of the conditional PDFs. In this chapter, we will limit our
discussion to the parametric approaches.

In parametric statistical modeling for classification and recognition, a probabilistic model
is chosen and its parameters are trained to optimize a certain criterion under the assumption
that the true PDF of the features can be approximated well by the model. Parameter opti-
mization takes place without questioning the validity of this assumption. Since the features
are usually chosen based on prior knowledge about the task using heuristic approaches, this
assumption is in most cases unjustified.

Information theory provides a measure by which we can say how well a PDF is ap-
proximated by another PDF [90]. This measure is called the divergence, Kullback-Liebler

distance, or the relative entropy and is defined by
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R(P,P) = Ep [log <g>] , (3.1)

where P is the true PDF and P is the approximate PDF. An important property of the

relative entropy is that
with equality if and only if

in the expectation sense.

Most parametric statistical classification systems use maximum likelihood estimation
(MLE) or Bayesian methods to estimate the parameters of the model. The popularity of MLE
is attributed to the existence of efficient algorithms to implement it, like the expectation-
maximization (EM) algorithm, and to its consistency and asymptotic efficiency, if the true
PDF belongs to the admissible set of parameterized PDF models [91].

In the MLE method, the parameters \* are estimated given a set of i.i.d observations

{x"}¥, by maximizing the functional

N
Lemp = » logP(x',)) (3.2)
i=1
with respect to the parameters \.

Maximizing this empirical functional is equivalent to minimizing an empirical estimate

of the relative entropy between the true PDF and the hypothesized PDF model
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N
~ 1 ~ .
Remp(P, P) = —H(x)—NZIOgP(x’,)\), (3.3)
i=1

where H(x) is the differential entropy of the random vector x.
Vapnik and Chervonenkis show that the necessary and sufficient condition of the consis-
tency of this maximization problem is [92]
Pr (Sup |R(P, P) — Repp(P, P)| > e> -0 (3.4)
PYETN

for N — oo and Ve > 0,

where {x"}N | are generated by any admissible PDF P(x, )\y), Yo € A.

However, as we do not know the true PDF, we cannot guarantee small approximation
error. A small approximation error can be achieved by using a complex structure of the
hypothesized models that can approximate a large set of PDFs. On the other hand, this
increases the computational and conceptual complexity of the system, and increases the
required amount of training data to get a good estimate of the model parameters.

An important property of any classification or recognition model that is related to con-
sistency is its generalization ability. The generalization ability is a monotonically increasing
function of the ratio of the number of available training vectors and the VC dimension of the
family of the hypothesized PDFs [92]. This means that the requirements of generalization
ability conflict with the requirements of decreasing the approximation error.

One way of controlling the complexity of the model is by using a relatively simple prob-
abilistic model and a transform of the observation vector to a new feature vector whose
PDF is better modeled by the hypothesized PDF based on certain criterion. Many previous
approaches to feature transformation show improvement in classification and recognition

accuracy compared to using more complex probabilistic models for the same number of
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parameters [55], [87], and [88]. Most of these methods, as will be discussed in the next sec-
tion, are linear transformations that use a number of parameters equal to the square of the
dimension of the feature vector. Our approach provides a generalization to nonlinear trans-
formations that is more flexible in selecting the number of the parameters of the transform,

as it is linear in the dimension of the input features.

3.2 Limitations of Previous Approaches

Transformations to achieve normality, described in Chapter 2, were constrained to using a
restricted family of power transforms and to a Gaussian hypothesized model. These trans-
forms were scalar transforms, i.e., each transformed feature is obtained from a single input
measurement.

In previous chapters, the importance of modeling the covariance structure of the prob-
abilistic models in an efficient way, or generating a set of features that satisfy the diagonal
covariance assumptions, was discussed. The brief review provided in Chapter 2 shows that
all model-based and feature-based approaches were based on linear transformation of the
parameters of the model or the feature space, respectively. We will concentrate here on fac-
tor analysis (FA) and independent component analysis (ICA), because principal component
analysis (PCA) [16] and maximum likelihood linear transform (MLLT) [55] can be shown
to be special cases of these approaches. In factor analysis, the observed feature vector is

assumed to be related to latent variables (factors) by the relation

x = Az+v, (3.5)

where x € R” is the observation vector, A is an n X p matrix where p < n, z € R? is the
factor vector that denotes a Gaussian random vector with zero mean and identity covariance

matrix, and v € R” is an independent Gaussian noise vector with diagonal covariance .
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Using this model for the acoustic feature vector in speech recognition, the covariance matrix

of this feature vector can be written as [39]

E = AAT 9. (3.6)

The parameters of this model are then optimized to maximize the likelihood using the
EM algorithm [93] or to minimize an empirical estimate of the recognition error using the
minimum classification error (MCE) approach [40].

On the other hand, the goal of ICA algorithms can be formulated as finding the linear
transformation W of the dependent observation vector X that makes the outputs as statisti-
cally independent as possible. This means minimizing the mutual information of the output
vector Y, since

I(Y) > 0,

with equality if and only if the output vector components are statistically independent.
Both FA and ICA algorithms assume that the factors are mixed linearly to generate
the observations data. In many interesting applications, this assumption is unjustified or
unacceptable. An example is the speech recognition problem, as all acoustic features used in
speech recognition cannot be modeled as a linear mixture of independent sources of variations
in the speech signal. To be more specific, let us concentrate, for example, on the standard
form of these features as coefficients in the cepstral domain. Coarticulation effects and
additive noise are examples of independent sources in the speech signal that are nonlinearly
combined in the cepstral domain with the information about the vocal tract shape that
is important for recognition. The source-filter model proposes that the excitation signal
and the vocal tract filter are linearly combined in the cepstral domain, but the source-
filter model is unrealistic in many cases, especially for consonants. Time-varying filters

and filter-dependent sources result in a nonlinear source-filter combination in the cepstral
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domain [94]. In image and face recognition also, there are deformations like bending which
result in correlations that cannot be compensated for by a linear transform. In case of
Gaussian or mixture of Gaussian hypothesized PDF, this sufficiency of linear transformation
assumption is equivalent to assuming that the true conditional joint PDF's of the features
are Gaussian or mixture of Gaussian PDFs, respectively. This is due to the fact that any
linear transformation of a Gaussian random vector results in a Gaussian random vector.
This limitation was alleviated in the nonlinear independent component analysis approach
proposed in [88]. However, the statistical independence constraint is only one of many
possible constraints that may be imposed on the probabilistic models used in classification
and recognition systems. For HMM recognizers with diagonal-covariance Gaussian mixtures,
the statistical independence constraint is conditional on the Gaussian component of the
mixture. This problem can be solved by using a different map for each Gaussian component,
but this solution may be impractical in a large vocabulary speech recognition system with
hundreds of thousands of Gaussian PDFs. There is another problem not addressed by these
previous approaches, a problem actually common to all previous approaches to the problem
of incorrect probabilistic model assumptions in speech recognition described in Chapter 2.
The approaches neglect the effect of having an incorrect parametric model of the PDF. For
example, the features can be statistically independent, but their PDF is different from the
Gaussian PDF imposed by the model. This mismatch affects both model-based and feature-
based approaches. In model-based approaches, a model with more relaxed constraints is
assumed, and the additional parameters of this model are trained by MLE or a discriminative
training algorithm. This takes place without questioning the validity of the new relaxed
model of the features, or discussion of how the MLE or discriminative training of these
parameters will improve the overall performance [11], [39]. In feature-based approaches like
MLLT, an intuitive argument was presented in [55] proving that, for a diagonal covariance
Gaussian PDF, using a full-rank linear map that is estimated by maximizing the likelihood

in the new feature space will increase the likelihood of the training data, but it was not
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generalized to other PDFs or more general transformations. In the work presented in [88] and
described in Section 3.4, we proved that for any PDF that assumes statistical independence
of the features and a volume-preserving mapping of the features, maximizing the likelihood
in a new feature space will converge under some consistency constraints to the true likelihood
in the original feature space. This convergence cannot be achieved by MLE of the parameters
of the model in the original feature space unless the original features are already statistically
independent. A generalization to other model assumptions is needed and will be provided
in the next section.

In the recent subspace-constrained precision matrices and means (SPAM) approach to
the redundancy reduction problem, the precision matrices of the model (i.e., the inverse
covariance matrices) are constrained to lie in a subspace of the space of all symmetric n x n
matrices and the mean vectors are constrained to lie in a subspace of R", where n is the

features vector dimension. The percesion matrices are represented by the basis expansion
K
=) XA (3.7)

where j is the Gaussian component index and {)\i}szl are the untied parameters for the
jth Gaussian component, the basis symmetric matrices { A}, are tied across all Gaussian
components, and K is the number of basis matrices [95]. This approach assumes that a linear
subspace projection of the full-covariance models can provide good performance for fewer
parameters than those needed by the full-covariance model. It is not clear, however, what
feature space conditions are required for this assumption to be valid. It suffers also from
the problems of not accounting for nonlinear sources of the correlation in the feature vector,
and using a probabilistic model with relaxed constraints without questioning the validity of
the new relaxed model. Also, the relaxation of the diagonal-covariance constraint on the
Gaussian components achieved by the SPAM approach can be combined with any feature

transformation using the model enforcement approach described in the next section.
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3.3 A Unified Information-Theoretic Approach to
Model Enforcement

Bayesian classifiers rely on models of the a priori and class-conditional feature distributions;
the classifier is trained by optimizing these models to best represent features observed in
a training corpus according to certain criteria. In many problems of interest, the true
class-conditional feature probability density function (PDF) is not a member of the set
of PDFs the classifier can represent. Previous research has shown that the effect of this
problem may be reduced either by improving the models, or by transforming the features
used in the classifier. This section addresses this model mismatch problem in statistical
identification, classification, and recognition systems. In the previous section, we described
many serious limitations of previous techniques. We formulate the problem as the problem
of minimizing the relative entropy, also known as the Kullback-Liebler distance, between the
true conditional probability density function and the hypothesized probabilistic model.
The goal of this section is to generalize feature transformation in two ways. First, we will
provide a feature transformation framework that makes no assumptions about the proba-
bilistic model and the constraints imposed on it. This provides us with the flexibility needed
to address problems in which the model is not necessarily Gaussian and does not assume
the features are uncorrelated or independent, but assumes a certain parametric form of the
features’ conditional PDFs. Second, we will provide a nonlinear transform, as opposed to
previous linear transforms, that is based on this framework. This nonlinear transform is
a vector-based transform, as opposed to previous scalar power transforms. The number of
parameters of this transform is linear in the dimension of the input feature vector, while it is
quadratic for linear transforms. We will show also how all previous transforms to normality
and redundancy reduction approaches discussed in Chapter 2 and the previous section are
special cases of the information-theoretic model enforcement approach proposed here. Based

on this formulation, we provide a computationally efficient solution to the problem based on
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volume-preserving maps; existing linear transform designs are shown to be special cases of the
proposed solution. Using this result, we provide a nonlinear extension of ICA and present the
symplectic maximum likelihood transform (SMLT), a nonlinear volume-preserving extension
of the maximum likelihood linear transform (MLLT). This approach has many applications
in statistical modeling, classification, and recognition. We apply it to the maximum likeli-
hood estimation of the joint probability density function (PDF) of order statistics and show
a significant increase in the likelihood for the same number of parameters. We provide also
phoneme recognition experiments that show recognition accuracy improvement compared
to using the baseline Mel-frequency cepstrum coefficient (MFCC) features or using MLLT.
Then, we present an iterative algorithm to jointly estimate the parameters of the symplectic

map and the probabilistic model for both applications.

3.3.1 Problem formulation

Motivated by the discussion of the previous sections, we will choose any hypothesized para-
metric family of distributions to be used in our probabilistic model, and search for a map of
the features that improves the validity of our model. To do that, we will need the following

theorem.

Theorem 3.1 Let y = f(x) be an arbitrary one-to-one map of the random vector x in R"
toy inR", and let PA(Y) be a hypothesized parametric family of density functions. The map
f*(.) and the set of parameters A* minimize the relative entropy between the hypothesized

and the true PDFs of y if and only if they also mazximize the objective function

V. = Epy) |log(|det (J7)]) +log Pa(y) |, (3.8)

where J; is the Jacobian matriz of the map f(.).

43



Proof:
We will rewrite the expression for the relative entropy after an arbitrary transformation

y = f(x) of the input random vector x in ", as

R(P(y), P(y)) = —H(P(y)) - Ery) [log (P(y))]. (3.9)

where H(P(y)) is the differential entropy of the random vector y based on its true PDF

P(y).
The relation between the output differential entropy and the input differential entropy is

in general [96]
H(P(y)) < H(P(X))+/ P(x)log (|det (Jf)|) dx, (3.10)

n

where P(x) is the probability density function of the random vector x, for an arbitrary
transformation y = f(x) of the random vector x in ", with equality if f(x) is invertible.

Therefore the relative entropy can be written as

R(PW).P) = ~H(P() ~ Engo[log (ldet (3))] - Erg) [log P(y)] (310
for an invertible map y = f(x).

The expectation of a function g(x) for an arbitrary one-to-one map y = f(x) can be

written as [96]

Ep l9(x)] = Er) [9(f ()], (3.12)

where f~!(.) is the inverse map.
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Therefore,

R(P(y), P(y)) = —H(P(x)) = Ep(y) |log (|det (J7)]) +log P(y)| - (3.13)

Equation (3.13) proves the theorem. |

Theorem 3.1 states that minimizing the relative entropy is equivalent to maximizing the
sum of the expected log likelihood and a cost function; the cost function is determined by
the determinant of the Jacobian matrix of the transform. This cost function guarantees
that maximizing the likelihood of the transformed features will not be at the expense of
their information content measured by their differential entropy. It should be noted that the
objective function is the likelihood in the original feature space given the probabilistic model

in the new feature space.

3.3.2 A maximum likelihood approach to model enforcement

For a nonlinear feature transformation, the Jacobian matrix of the transformation is a func-
tion of the values of the feature vectors. This makes the maximization of the objective
function for a high-dimensional input feature vector computationally expensive. A signifi-
cant reduction in the computational complexity is achieved by an important special case.
This special case that reduces the problem to maximum likelihood estimation (MLE) of
the model and map parameters is given in the following lemma, but first we need to define

volume-preserving maps in R”, where n is an arbitrary positive integer [97].

Definition 3.1 A C* map [ : Sx — Sy, where Sx C R" and S; C R”" is said to be

volume-preserving if and only if |det (J;)| =1 Vx € Sk.
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Lemma 3.1 Lety = f(x) be an arbitrary one-to-one volume-preserving map of the random
vector x in R™ toy in R", and let ]5A(y) be a hypothesized parametric family of density
functions. The map f*(.) and the set of parameters A* jointly minimize the relative entropy
between the hypothesized and the true PDFs of y if and only if they also mazimize the expected

log likelihood based on the hypothesized PDF, Ep(y) [log PA(y)] .

Using the definition of the volume-preserving maps, the proof of the lemma is straight-
forward. The lemma proves that the maximum likelihood criterion is the appropriate model
enforcement criterion for any volume-preserving transform. By reducing the problem to

MLE, efficient algorithms based on the incremental EM algorithm can be designed [98].

3.3.3 Generality of the model enforcement approach

Theorem 3.1 generalizes the previous approaches in two ways. First, transforms can be
designed to satisfy arbitrary constraints on the hypothesized PDF, not necessarily those that
impose an independence or decorrelation constraint on the features, and the hypothesized
PDF is not necessarily Gaussian or mixture of Gaussians. Second, the feature transformation
is not necessarily linear. To show the generality of Theorem 3.1 and its wide range of
applications, we relate it to previous methods.

Transformations to normality described in Chapter 2 are a special case of Theorem 3.1
by constraining the PDF model to be Gaussian and the transform to be a power transform.

PCA may be viewed as a special case of Theorem 3.1 under two equivalent constraints.
First, if the transform is constrained to be linear and the model PDF is constrained to
be a diagonal-covariance Gaussian, then Theorem 3.1 reduces to PCA. Equivalently, if the
true feature PDF is assumed to be Gaussian, and the model PDF is constrained to be a
diagonal-covariance Gaussian, Theorem 3.1 reduces to PCA. Probabilistic PCA (PPCA) is

a generalization of PCA that can be shown as an application of Theorem 3.1 when the
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hypothesized model of the joint PDF assumes that the features are uncorrelated but not
necessarily Gaussian.

ICA also can be shown as a special case of Theorem 3.1 when the hypothesized model
assumes statistical independence of the transformed features and the transform is constrained
to be linear. Nonlinear ICA removes the constraint that the transform must be linear. Factor
analysis is also a special case of Theorem 3.1 by assuming that the hypothesized joint PDF
is Gaussian with special covariance structure.

MLLT is a special case of Theorem 3.1 by using a linear map of the features and assuming
the hypothesized joint PDF is Gaussian or a mixture of Gaussians. As we highlighted before,
these two assumptions of linearity and Gaussianity together are equivalent to the assumption
that the original features are Gaussian.

It should be noted that all linear maps designed to improve the satisfaction of the features
of a given model are special cases of Lemma 3.1, as any linear map is equivalent to a linear

volume-preserving map multiplied by a scalar.

3.4 A Nonlinear Independent Component Analysis
Application

In the previous section, we showed that by using a volume-preserving map, the model en-
forcement problem is reduced to maximizing the likelihood of the output components. In this
section, an extension of the ICA algorithms to nonlinearly mixed sources is introduced. Our
goal is to find the mixing functions and the independent components given the observations.
By restricting the mixing function to a class of volume-preserving transforms, we will show
that this approach is a direct application of Lemma 3.1 in the previous section. This section
therefore develops a maximum likelihood volume-preserving nonlinear transform algorithm
for the case when the probabilistic model assumes statistical independence of the elements
of the feature vector. The resulting algorithm may be considered a nonlinear generalization

of ICA with a more flexible parameter count than ICA; experiments in the next section
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show that the algorithm outperforms ICA with fewer trainable parameters. The maximum
likelihood approach using volume-preserving maps is a good compromise between the two
extremes of previous linear approaches with their simplicity and computational efficiency
but inadequacy in many applications, and the nonlinear approaches with their generality
but computational complexity associated with calculating the determinant of the Jacobian

matrix.

3.4.1 Problem formulation

Since the components are assumed to be statistically independent, we have to find the
solution that minimizes the mutual information of the output components I(Y) [90]. The

mutual information is a function of the output differential entropy,
I(Y) =Y H(Y;) - H(Y), (3.14)
i=1

where n is the number of components of the output vector, and Y; is the ¢th component of
the vector Y.

To have a well-defined optimization problem, we need some restrictions on the nonlinear
mixing function or the criterion that the solution should optimize. For a continuous random
vector Y € R”, the mutual information is invariant to scaling but differential entropy is
sensitive to it. To avoid this scale-sensitivity problem, and the need of having an estimate
of the joint probability density function to calculate the differential entropy of the output
vector, we choose to keep the output differential entropy equal to the input differential
entropy H(Y) = H(X), while minimizing )., H(Y;) to minimize the mutual information
of the output vector.

It will be shown also that this choice leads to minimizing the negative of the empirical

function used in maximizing the likelihood of the output vectors. This means that this
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approach produces a maximum likelihood transform as described in Lemma 3.1 under the
constraint of the output components’ independence.

As was shown in the previous section, the input and output differential entropy are equal
if and only if the map is volume-preserving. Symplectic maps are a class of volume-preserving
maps with useful properties. An interesting property of any nonreflecting symplectic trans-

formation from x to y is that it can be represented using a scalar function ¢(.) such that [99]

y = x- Q") (3.15)
X+y
u= :
2
0 -1
Q= ;
I O
Q= q (3.16

where I denotes the identity matrix in $8%/2. The gradient is to be taken with respect to the
argument u.

Now the nonlinear ICA problem can be formulated as the problem of finding the function
g(u) that minimizes Y, H(Y;) under the constraint that H(Y) = H(X) guaranteed by the
symplectic map. The minimum of this sum , H(X), is independent of the symplectic map

parameters, as for any random vector Y,

SSHY) = HY). (3.17)
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We use a multilayer feed-forward neural network to get a good approximation of the scalar
function g(u) [100]. The parameters of this network are optimized to minimize Y. , H(Y;)

under the constraint H(Y) = H(X), i.e.,

W = arg min z_; H(Y;), (3.18)
where
W = (A,B),
M
g(u,A,B) = b;S(a;u), (3.19)
7j=1

where S(.) is a nonlinear function like sigmoid or hyperbolic tangent, a; is the jth row of
the M x n matrix A, and b; is the jth element of the M x 1 vector B. The constant offset

term that is usually used was omitted.

3.4.2 [Efficient estimation of the objective function

The objective function to be minimized is

Vo= Y H(®Y). (3.20)

The differential entropy of a random variable is by definition the negative of the expec-

tation of the logarithm of its probability density function
H(Y;) = —E[log P(Y;)], fori=1,2,--- ,n. (3.21)

Since we do not have the true probability density function of the random variable Y;, and
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all we can calculate is a finite set of realizations of this random variable {y}, y2,--- ,yN} of
size N, the expectation will be approximated by the sample mean of the given values of the
random vector. This is justified by the weak law of large numbers, which states that if the

set {y', 4% -+ ,y"} are independent and identically distributed, then [96]
|
N Z y; — E[Yj], in probability as N — oo. (3.22)
i=1
This gives the empirical estimate of the objective function as

N n
Vemp = = > log P(Y; = y)), (3.23)
i=1 j=1
where N is the number of samples used to estimate V,,,,. Again, we do not have the true
probability density functions of each component; therefore, we use a maximum likelihood
parameterized estimate of these probability density functions.

This gives the final form of the empirical estimate of the objective function as

N n
Vemp = — 2> log Pa;(Y; =), (3.24)
i=1 j=1
where P (Y;) is the parameterized estimate of P(Y;) defined by the parameters A; for
j=12--- n.

Minimizing this expression is equivalent to maximizing the estimated log likelihood of
the output vectors, under the assumption that the features are independent. This means
that this approach can be considered as a generalization of maximum likelihood approaches
to ICA to the nonlinear mixing case. Maximum likelihood approaches to ICA are closely
related to the MLLT introduced in [55]. The difference is mainly in replacing the output

coefficients’ independence constraint of ICA by the diagonal-covariance constraint of the
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Gaussian mixture model in MLLT.
To calculate the gradient of the objective function with respect to the symplectic trans-

formation parameters, we need to calculate its derivative with respect to each parameter.

In general,
a‘/:zm aPA y) ay
Wp —  — ZZ J aa] (log PAj (Y] = y_]) + 1)|yj=y;7 (325)
ar i=1 j=1 ar
av;zm a]DA ) ay
2 = -3y R B (=) 4y 0
q i=1 j=1 a
for
q= 17 27 ’ ) M7
and
r=12---.n
Therefore,
2
i _ LA (3.27)
Dagy Oujtn(jyg Oagr
dy; L O%g(w)
21— _p , 3.28
8bq (]) 8uj+h(j) n qu ( )
-1 if;j>2
h(j) = i
1 ifyj<3g

This formulation of the symplectic parameters evaluation as a minimization problem is
ill-posed, as very small changes in the values of the parameters may lead to drastic changes
in the objective function. The instability of the solution arises from the fact that the output
is related to the input using an implicit form. Once the instability for a given set of data

samples causes the absolute value of the symplectic parameters to be large, the output of the
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feed-forward network saturates and becomes less dependent on the values of the symplectic
parameters. This means that the algorithm will not converge and the effect of any additional
input data sets on the final values of the symplectic parameters will be minimal. To make
the problem well posed, the map from X to Y should be continuous, and the map from
X X Y to g(.) should be continuous also. If Y was represented as an explicit function of
X using the feed forward neural network, the continuity of both maps will be forced by
this representation. But due to the implicit function representation of the symplectic map,
the value of y for a given x is estimated by an optimization problem and the map is no
longer guaranteed to be continuous. The problem becomes well-posed by restricting the
set from which g(u) is chosen to some compact set G. One can show by virtue of the
operator inversion lemma [101] that in this case the problem of empirical risk minimization
becomes well posed. One can show also that if g(u) is sufficiently well-behaved, i.e, has a
finite covering number, the empirical objective function will converge to the actual objective

function for increasing sample size N, i.e.,

Pr (sgg V1g] = Vemplo]l > e) —0 (3.29)

for N = oo and € > 0.

Vapnik and Chervonenkis show that such a condition is necessary and sufficient to give
uniform convergence bounds [102]. Classical regularization theory provides a solution to
this type of problem in which a function is to be approximated from sparse data [103]. It
formulates the regression problem as a variational problem of finding the function g(u) € G

that minimizes the functional

N

D Vewn(X', ¥, 9) + Mgl (3.30)

=1

1
Eg — N

where ||g||% is a norm in a reproducing kernel Hilbert space G defined by the positive definite
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function K, N is the number of data samples. The functionals of classical regularization
lacked a rigorous justification for a finite set of training data. Vapnik has provided a general
theory that justifies regularization functionals for learning from a finite set of data [92]. In
the framework of structural risk minimization (SRM) suggested by Vapnik, [92], [104] , we
can define a structure using a nested sequence of hypothesis spaces G; C Gy C -+ C Gy
with G, being the set of functions g(u) in the reproducing kernel Hilbert space (RKHS)

with
9l < Cn, (3.31)

where {Cm}iﬁfi{ is a monotonically increasing sequence of positive constants. For each m, we
are supposed to minimize the empirical objective function subject to this constraint. This

in turn leads to using the Lagrange multiplier \,, and to minimizing

N
S Vemp (5,37, 9) + Amn(llgll = C2),

=1

1
N

with respect to the symplectic parameters and maximizing with respect to A\,, > 0. The

solution of this optimization problem is the same as the solution for minimizing

N
D Vemn(x', 3", 9) + A (V) (llglli — ),

=1

1
N

with respect to the symplectic maps, where \*(N) is the optimal Lagrange multiplier corre-
sponding to the optimal element of the structure Cp(ny.

In practice, this structure is formulated by imposing a convex penalty term on some
quantity K(g) related to g(u), which is not necessarily the norm of the function in the
reproducing kernel Hilbert space [105]. This functional has to be convex and continuous.

The value of A*(V) is usually chosen from a finite set of possible values or set to a constant
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value.
In this work, we used the square of the /5 norm of the symplectic parameters vector

W = vect(A, B),

W5 = Juil?, (3.32)
=1

where w; is the 7th element of the vector W, and m is the length of the vector, as the convex
penalty and selected the optimal Lagrange multiplier A*(N) from a finite set of 10 values.

The value of Cj-(y also was selected from a finite set of four values.

3.4.3 Maximum likelihood formulation of the problem

As shown before, the problem of nonlinear independent component analysis is reduced by

using volume-preserving maps to the problem of minimizing the objective function

N n
Vemp = — 3 _ Y logPa,(Y; =y, (3.33)

i=1 j=1

where Py, (Y;) is the parameterized estimate of P(Y;) defined by the parameters A; for

j=1,2,---,n. This is clearly equivalent to maximizing the following objective function

N n
Lewmp = Y. log Py (Y; =) (3.34)

i=1 j=1

Let the joint PDF of the output components under their independence constraint be

Pina(y); then

Pualy) = []P())- (3.35)
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This means that our objective function to be maximized is

N
Lemp = Y _log Pia(y"). (3.36)
i=1

This concludes the proof that the volume-preserving independent component analysis
problem is a maximum likelihood problem in the new feature space under the independence
constraint. This means that the symplectic parameters that make the output components
as statistically independent as possible are the parameters that maximize the likelihood
of the output components under the independence constraint that is imposed explicitly
on the joint PDF. There is an implicit assumption here that [[7_, P(y;) = [[;—, Pa, (%)),
which is not necessarily true. The necessary and sufficient conditions for this to be true
are the same conditions for consistency of the maximum likelihood estimate provided in [92]
and [102]. Since maximum likelihood estimation is the most popular approach for estimating
the parameters of the speech recognizer due to the existence of efficient algorithms to train
the parameters like the expectation-maximization algorithm (EM) [24], this result allows us

to jointly optimize the symplectic parameters and the recognizer parameters.

3.4.4 Implementation of the algorithm for speech processing

Initially, both the values of the symplectic map parameters W and the output vectors y are
unknown, so we choose an initial value of the symplectic map parameters, then we solve the
symplectic map equation for the output vectors. Given the output vectors corresponding to
the input data, we use the EM algorithm to calculate the parameters of the probabilistic
model. Based on this model, the empirical objective function is estimated, and the symplectic
map parameters are updated using a conjugate gradient based method. This sequence is

repeated until a local minimum of the empirical estimate of the objective function is achieved.
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3.4.4.1 Estimation of the output vectors

To solve the symplectic transformation relation for the output vector given the input vector
and the symplectic map parameters, the problem is formulated as an optimization problem.
The output of the symplectic mapping is calculated using the conjugate gradient algorithm.
The conjugate gradient algorithm [106], is used to calculate the output vector y that achieves

the unconstrained minimum of

2
+
D(y) = Hy —-x+Q'Vy (—X 5 y) H : (3.37)
The updating rule at each iteration is

The directions of the conjugate gradient algorithm are generated by

d° = -VD(y"), (3.39)
d* = —VD(y*)+ ¢*dF, (3.40)
where (¥ is given by

VD(yk1)TVD(yk-1)

The scaling factor o* of the direction in each iteration is selected based on the limited

minimization rule on the interval [0, h]

D(y* +ofd*) = rn[(i)r}b] D(y* + ad"), (3.42)
agc|0,
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using the golden-section search method. The algorithm is guaranteed to converge to a local
minimum like all gradient-based optimization algorithms; because D(y) is in general not a
convex function of y, convergence to a global minimum is not guaranteed. In practice, for
about 90% of the input vectors, the algorithm converged in less than five iterations to a value
of D(y) less than 0.0001. Before using the regularization term in the objective function, the
convergence of this algorithm was slow, and it sometimes failed to converge, when the input
data consisted of time-domain speech samples.

The computational complexity of the algorithm for updating the output vectors in each
iteration is O((n + (n + 1)M)N), where n is the input vector length, M is the number of

hidden nodes in the neural network, and NV is the number of input vectors.

3.4.4.2 Evaluation of the parameters of the symplectic map

After calculating the output vectors corresponding to the initial map parameters, we use the
conjugate gradient algorithm to find the set of the mapping parameters that minimize the
regularized objective function £,.

To be able to calculate the differential entropy of each component of the output y and
its gradient, we have to define a parametric form of the PDF of the output components.
In our experiments, we used both the mixture of Gaussians and the generalized Gaussian
probabilistic model for each component. The motivation of choosing these specific forms is
that both are general enough to approximate any PDF from the exponential family, while
the mixture of Gaussians is the better choice to approximate a multimodal PDF. The mix-
ture of Gaussians is usually used to model the conditional PDF of MFCC coefficients in
speech recognition that is known to be multimodal [107], while the generalized Gaussian is
known to approximate well the PDF of the time-domain speech samples that is known to be
unimodal [51].

In all experiments described in this work, we used both parametric forms and reported

the one that gave the best results. The generalized Gaussian PDF gave better results for
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direct time-domain processing of the speech signal, while the mixture of Gaussians PDF gave
better results for cepstral-domain experiments.

The mixture Gaussian model is given by

d Hy=1

k=1
for all j = 1,2,--+,n, where Hjj is the weight of the £th Gaussian PDF in the mixture of
Gaussians, K is the number of Gaussian PDF's in the mixture of Gaussians, /i is the mean
of the kth Gaussian PDF in the mixture, o7, is the variance of the kth Gaussian PDF in the

mixture, and the generalized Gaussian probability distribution model for each component is

, L 12/(1+8y)
P(y;) = %f])exp [—c(ﬁj) %T/LJ ] (3.44)
for all j =1,2,---,n, where
T [2(1+ 8;)
c(B;) = - [1(1[1 ﬁj)]lj“Lﬁﬂ (3.45)
2
and
3+ )]
B) = 2 J , 3.46
0= L+ .

where 115 is the mean of y;, O'JZ- is the variance of y;, and 8 is a measure of the kurtosis and

a parameter that controls the distribution’s deviation from normality. In the case of the
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mixture Gaussian probabilistic model, the derivative of the probability density function is

i (s = k) oo <_(y7_7£”€)2> : (3.47)

ik
8y] H; V 27rajk o 20},

and in the case of the generalized Gaussian distribution model, the derivative of the proba-

bility density function is

OP(y;)

Yi = Hi
Yi). 3.48
% L5 Py (3.45)

1+B] O'j

= (5])

The parameters of these probabilistic models are calculated from the output data using the
expectation-maximization (EM) algorithm [93].

We used the hyperbolic tangent function as the nonlinear function in the feed forward

neural network approximation of the scalar function that is used in the symplectic map,
ef —e’*?

S(z) = ——. 3.49

() = S (349

Therefore, the derivatives of the output components with respect to the symplectic map

parameters become

2h(1)bgtqien(iyng(agy) (1 — g*(agy)) =52
if r# j+ h(j)2
% - (3.50)
2h(1)bgtqien(iyng(agy) (1 — g*(agy)) =52
[ —P(5)be(1 = g*(agy)) if r=j+h(j)3
g—ij = —h(j)agj+n( )%(1 — ¢*(azy)). (3.51)
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Substituting the derivatives of the output components with respect to the symplectic map
parameters and the derivatives of the probability density function with respect to the output
components for both parametric PDF forms in Equations (3.25), (3.26), (3.27), and (3.28),
we get the derivatives of the empirical objective function with respect to the symplectic
parameters. Adding to these derivatives, the derivatives of the regularization term, we get the
derivatives of the regularized objective function with respect to the symplectic parameters.
Given these derivatives, we can use any gradient-based algorithm to update the values of the
symplectic parameters. We chose the conjugate gradient algorithm due to its fast convergence
compared to other gradient based methods. The computational complexity of the algorithm
for updating the symplectic parameters in each iteration is O((3nK + (n+ 1)M +n*M)N),
where n is the input vector length, M is the number of hidden nodes in the neural network, K
is the number of Gaussian components in the mixture, and K = 1 for generalized Gaussian

PDF, and N is the number of input vectors.

3.4.5 Experiments and results

Our approach to nonlinear ICA was applied to the speech signal. First, it was applied to the
speech samples directly in the time domain, and then it was applied to the MFCC coefficients
in the cepstral domain. The time domain processing of speech has applications in speech
coding, prosody recognition, and speaker recognition, while processing of MFCC can be used
in speech recognition.

In the direct time domain processing, the TIMIT speech database, with sampling rate at
16 KHZ, is downsampled to 8 KHZ and preemphasized. Each utterance of speech is divided
into fixed-size frames of length 20 samples. Then 1000 of these frames are used at a time
to update the values of the parameters of the symplectic transformation and the marginal

probability density functions of the output components.
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In the cepstral domain processing, the Mel-frequency cepstrum coefficients are calculated
for 4500 utterances from the TIMIT database. The overall feature vector consists of 12
MFCC coefficients in the first two experiments in the cepstral domain. The last experiment
uses 12 MFCC coefficients, energy, and their deltas. In both cases, this MFCC based feature
vector is used as the input to our symplectic nonlinear independent component analysis.

In each iteration, the output components are calculated using the current symplectic
transformation parameters by using the symplectic mapping equation, then the maximum
likelihood estimates of the marginal probability density functions of the output components
are calculated using the EM algorithm. Then, the sum of the differential entropy of the
output components is calculated and its gradient and the symplectic mapping parameters are
updated such that this sum is minimized. After the iterative algorithm converges to a set of
locally optimal symplectic parameters, the training data are transformed by the symplectic
map yielding corresponding output coefficients. The output coefficients are compared to
LPCC and MFCC coefficients in their coding efficiency, and to LDA, linear ICA, and MLLT

in their recognition accuracy.

3.4.5.1 Coding efficiency and sparseness of output coefficients

Coding efficiency of acoustic features that are used in speech recognition is receiving much
more attention recently. This is due to the growing interest in distributed speech recognition
systems, especially over limited bandwidth networks like wireless networks. We used the
empirical estimate of the differential entropy, V..,, as a measure of the number of bits
required to code each coefficient. Table 3.1 compares the empirical estimate of the differential
entropy of the coefficients obtained using the nonlinear ICA algorithm in the time domain
and the cepstral domain to the empirical estimate of the differential entropy of MFCC and
LPCC coefficients. The table shows that coefficients that are generated by nonlinear ICA

can be more efficiently coded than MFCC and LPCC coefficients.
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Table 3.1 An estimate of the differential entropy of the features per coefficient.

| Acoustic Features | Average Number of Bits |
ICA in Cepstral Domain 1.52
ICA in Time Domain 1.64
MFCC 1.77
LPCC 1.85

Another important feature of the output coefficients that are generated by nonlinear
ICA is the sparseness of the output feature set. Sparseness is related to reducing the re-
dundancy in the representation of the input signal. Given a dictionary of basis functions
S1(u), Sa(u),- -, Sm(u), sparse approximation techniques seek an approximation of a func-
tion g(u) as a linear combination of the smallest number of elements of the dictionary, that

is, an approximation of the form
fw() = > wgS,(u), (3.52)
q=1

with the smallest number of nonzero coefficients w, [108].

The problem can be formulated as minimizing the following cost function
E[w] = D(g(u),) w,S,(w) + el|wlle,, (3.53)
q=1

where D is a cost measuring the distance in some predefined norm between the true function
g(u) and our approximation, the £, norm of a vector counts the number of elements of that
vector which are different from zero, and € is a parameter that controls the trade off between
the sparseness and the goodness of the approximation. Unfortunately, it can be shown that
minimizing this cost function is NP-hard because of the ¢y norm. Therefore, the ¢y norm is

usually approximated by some other kind of norm like the /5 norm.
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In our work, we choose g(u) to be the scalar function in the symplectic mapping that
generates the independent components of the input data, and D is taken as the sum of the
differential entropy of these output components. We choose also to use the /5 norm. Com-
paring this optimization problem with the one we adopted in our algorithm, we find that
they are identical and therefore our algorithm is expected to provide a relatively sparse rep-
resentation of the scalar function g(u). A sparse representation of g(u) does not necessarily
imply a sparse representation of the speech signal itself, but the two types of sparseness
are related. To evaluate the sparseness of the signal representation using nonlinear ICA,
we compare the output coefficients with coefficients of other transforms (MFCC, LPCC) by
computing a measure of the sparseness of the feature vector itself.

One of the important measures of the sparseness of the output components is the kurtosis

measure defined by

K(Y) = E {(Y?T"y)j ~3, (3.54)
y
where /i, is the mean of the random variable Y, and af, is its variance. Kurtosis is propor-
tional to the peakiness of the probability density function of the random variable [109]. The
average value of the parameter 3 of the generalized Gaussian probabilistic model can be used
as a measure of the average kurtosis of the output components. In Figure 3.1, the average
value of [ for the output coefficients that result from processing the time-domain samples
of speech is shown as a function of the number of iterations of the algorithm. In Figure 3.2,
the average value of  when the speech signal is processed in the cepstral domain is shown
as a function of the number of the iterations of the algorithm. The figures show that the
nonlinear ICA algorithm tends to converge to output components with high kurtosis and
therefore to increase the sparseness of the output coefficients. The figures also show that the

nonlinear ICA algorithm with cepstral inputs tends to converge to output components with

kurtosis higher than those obtained from nonlinear ICA in the time domain.
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Change in B As A Function Of Number of Iterations for ICA in Time Domain
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Figure 3.1 The Average Value of # versus Number of Iterations of Nonlinear ICA in Time

Domain

Value of B As A Function Of Number Of Iterations of ICA In Cepstral Domain
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Figure 3.2 The Average Value of 3 versus Number of Iterations of Nonlinear ICA in Cepstral
Domain
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3.4.5.2 Recognition accuracy of output coefficients

There are many sources of variability in the speech signal, including linguistic information
content, but also including speakers with different dialects and speaking styles, and envi-
ronmental noise. Most acoustic features that have been successful in speech recognition try
to model the speech signal as the convolution of the excitation signal and the vocal tract
transfer function, and try to extract the vocal tract transfer function characteristics by lin-
ear predictive coding or homomorphic signal processing [1]. If linguistic and nonlinguistic
information in the speech signal are independently distributed, nonlinear ICA is capable in
principle of learning a mapping that approximately separates them, without the use of an
explicit convolutional speech production model. In order to evaluate the success of non-
linear ICA in finding such a mapping, we performed many speech recognition experiments
on the TIMIT database. The phoneme recognition accuracy achieved on TIMIT using the
SUMMIT segment-based system with different features for different segments and bound-
aries was 75.6% as reported in [110]. The HMM speech recognizer in [111] used 12 MFCC
coefficients, energy and their deltas as the acoustic feature vector. It achieved a 73.7%
phoneme recognition accuracy on TIMIT. In [112], the phoneme recognition accuracy for
the context-dependent models was 73.8% on TIMIT. A segment-based recognizer that was
tested on TIMIT achieved a phoneme recognition accuracy of 69.5% in [10]. A speech rec-
ognizer based on recurrent networks achieved phoneme recognition accuracy of 73.4% on
TIMIT in [113]. The results reported in this work like all previous results are recognition
results that do not use the time alignments provided with the test data. On the other hand,
phoneme classification experiments that use this time-alignment data can get classification
results on TIMIT up to 81.7% as reported in [110] using heterogeneous measurements.

In our experiments, the 61 phonemes defined in the TIMIT database are mapped to
48 phoneme labels for each frame of speech as described in [112]. These 48 phonemes are

collapsed to 39 phonemes for testing purposes as in [112]. A three-state left-to-right model for
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each triphone is trained using the EM algorithm. The number of mixtures per state was fixed
to five. After training the overall system and obtaining the symplectic map parameters, the
approximately independent output coefficients of the symplectic map are used as the input
acoustic features to a Gaussian mixture hidden Markov model speech recognizer [114]. The
parameters of the recognizer are trained using the training portion of the TIMIT database.
The parameters of the triphone models are then tied together using the same approach as
in [115].

To compare the performance of the proposed algorithm with other approaches, we gener-
ated acoustic features using LDA, linear ICA, and MLLT. We used the maximum likelihood
approach to LDA [68] and kept the dimensions of the output of LDA the same as the in-
put. We used also the maximum likelihood approach to linear ICA as described in [48] and
briefly overviewed in Chapter 2. Finally, we implemented MLLT as described in [55] and
briefly overviewed in Chapter 2. All these techniques used a feature vector that consists of
12 MFCC coefficients, the energy, and their deltas as their input.

Testing this recognizer, using the test data in the TIMIT database, we get the phoneme
recognition results in Table 3.2. These results are obtained by using a bigram phoneme
language model and by keeping the insertion error around 10% as in [112]. The table
compares these recognition results to the ones obtained by MFCC, LDA, linear ICA, and
MLLT.

It is clear that searching for the independent components of the speech signal cannot
separate information in the speech signal due to linguistic variations from information due
to other variations in the time domain.

To improve the phoneme recognition accuracy in the time domain, we used a linear map
that maximizes an empirical estimate of the mutual information between the phoneme iden-
tities and the output coefficients [116]. These linear maps were used on each component
separately and therefore preserved the approximate independence property of the compo-

nents generated by the nonlinear symplectic map. Using these features, generated by trying
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to maximize the mutual information, we trained the previously described HMM recognizer.
As shown in Table 3.2, the phoneme recognition accuracy is improved by using this lin-
ear map, but it still fails to match the phoneme recognition accuracy achieved by MFCC
features.

These results encouraged us to perform the nonlinear independent component analysis
on the MFCC coefficients instead of the time-domain signal directly.

Table 3.2 Phoneme recognition accuracy (%) on TIMIT for MFCC features and features
generated with ICA, LDA, MLLT, or NICA.

‘ Acoustic Features ‘ Recognition Accuracy ‘
MFCC 73.7%
Linear ICA 73.5%
LDA 73.8%
MLLT 74.6%
nonlinear ICA (NICA) in Time Domain 61.2%
NICA in Time Domain 64.4%
After MMI Mapping
NICA (Static MFCC) 68.7%
+Energy
NICA (Static MFCC) 71.2%
+ANICA +Energy+AEnergy
NICA (Static MFCC 75.6%
+Energy+/AMFCC+AEnergy)

Three different kinds of experiments were done to test the phoneme recognition results
based on the nonlinear ICA coefficients generated with MFCC inputs. First, the 12 cepstrum
coefficients were used as the input vector to the nonlinear component analysis algorithm, and
the energy was added to the output coefficients. The resultant 13-coefficient feature vector
was used to train the HMM recognizer. In the second experiment, we added the delta of the
output coefficients and the energy to the acoustic vector that is used in the first experiment.
The resultant 26-coefficient feature vectors were used to train the HMM recognizer. Finally,
we used the twelve cepstrum coefficients, the energy, and their deltas as the input to the

nonlinear independent component analysis algorithm, and used the 26 output coefficients
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as the acoustic vector that is used in phoneme recognition. As shown in Table 3.2, the
best results were achieved by using the cepstrum coefficients, the energy, and their deltas as
the input to the nonlinear symplectic map and using the output of the map as the acoustic
feature vector for the phoneme recognizer.

Comparing the phoneme recognition results of the symplectic map in the cepstral domain
to the results obtained using the symplectic map on the time-domain data, we find that
the features obtained from the mapping of the MFCC features outperform those obtained
from the time-domain data. Also, adding the delta coefficients to the MFCC coefficients
increases the phoneme recognition accuracy by about 7%. As shown in Table 3.2, the
MLLT performed the best among linear transforms with about 0.9% improvement over the
MFCC-based feature vector. Comparing these results with the nonlinear ICA algorithm in
the cepstral domain, we find that nonlinear ICA outperforms the best linear approach by

1% using the same length of the feature vector.

3.4.5.3 Discussion of the experiments

In this work, we introduced a nonlinear symplectic independent component analysis algo-
rithm. This algorithm can provide the maximum likelihood transform of the features under
the independence constraint on the transformed features. This algorithm was applied to the
speech signal in two different ways. First, it was applied to the time-domain speech data
and the output coefficients’ coding efficiency and phoneme recognition accuracy were evalu-
ated. The coding efficiency was found to be improved by this nonlinear mapping compared
to MFCC and LPCC coefficients. Our objective function was compared to the objective
function of the sparse approximation approaches and the proximity of the two solutions was
highlighted. However, the phoneme recognition accuracy based on these coefficients was
clearly less than that based on MFCC. This means that blindly searching for the indepen-
dent components of speech is not enough to be able to extract information correlated to

the linguistic information contained in the speech signal, and, in case of the speech signal,
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independence is not the best criterion to extract meaningful components of the speech signal
that are related to the actual sources of variations. This is, at least in part, because linguistic
and nonlinguistic information are not entirely independent.

Second, we applied our algorithm to the MFCC features of the speech signal and its
energy. Again, we compared the coding efficiency of the output coefficients to MFCC and
LPCC coefficients, and the phoneme recognition accuracy of the output coefficients to LDA,
linear ICA, and MLLT. In this case, the coding efficiency is improved also compared to MFCC
and LPCC coefficients and even compared to nonlinear ICA on time-domain data. Not only
the coding efficiency but also the phoneme recognition accuracy is improved compared to
MFCC, LDA, linear ICA, and MLLT. The best phoneme recognition accuracy is achieved
when the MFCC, energy, and their deltas are used as input to the nonlinear ICA algorithm.
This can be attributed to the ability of the algorithm to find a better representation of the
acoustic clues of different phonemes when provided with input features that have proved to
be efficient in coding the acoustic information that is related to phonemes. The improvement
due to this different representation over the input MFCC features that have the same amount
of information about phonemes, is due to the approximate independence property of the new
features that allow a more efficient probabilistic modeling of the conditional probabilities
with the same model complexity. We can conclude from these results that starting with well-
defined features for our goal, like MFCC for phoneme recognition, our nonlinear independent
component analysis can provide us with a more sparse representation that improves both
the coding efficiency of the coefficients and also the recognition accuracy. The work done
here supports the idea that blind information-theoretic approaches for signal analysis cannot
replace signal processing techniques tailored for certain application, but it can improve the
performance and increase the efficiency if used to augment traditional signal processing

techniques.
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3.5 The Symplectic Maximum Likelihood Transform

In the previous section, we introduced an iterative algorithm that reduces the mutual infor-
mation of the features to achieve as approximately independent components as possible. We
showed also that by using a volume-preserving map, the problem is reduced to maximizing
the likelihood of the output components. In return of the generality of the symplectic map
introduced before, we had to use regularization to guarantee the convergence of our algo-
rithm, and we also had to use an optimization algorithm to calculate the output vectors for
each iteration of the algorithm. These requirements increase the computational requirements
of the algorithm, and therefore limit its applications. In this section, we use an explicit rep-
resentation of the symplectic map to avoid these problems. Although it is a more restricted
representation than the implicit relation used before, the restrictions on the original feature
space by this representation are sometimes naturally satisfied as will be shown later.

By using this explicit relationship, we can calculate the output directly without optimiza-
tion, and we can optimize our objective function directly without adding a regularization
term. Not only this, but also the optimization problem now can be solved using a general-
ized form of the well-known expectation-maximization algorithm [93]. In the following, we
will first discuss the explicit representation of the symplectic map, and then provide Lemma
3.2 of Theorem 3.1 to formulate the problem as a maximum likelihood estimation of the
parameters of the symplectic map and an HMM model of a variable-length pattern. This
very interesting result allows us to jointly optimize the parameters of the symplectic map

and the parameters of the recognizer.

3.5.1 An alternative generating function of the symplectic map

Although the previous presentation of the symplectic map reduced the nonlinear ICA prob-
lem to the problem of estimating the parameters of a scalar function, its implementation

is not computationally efficient due to the implicit definition of the map. This implicit
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definition requires solving an optimization problem to calculate the corresponding output
components. To solve this problem, we use a reflecting symplectic transformation [117] that
uses explicit functions to define the symplectic map. The limitation of this new form is the
assumption that the input vectors can be partitioned into two halves. It is common also
in applications of symplectic maps in dynamical systems that one half is the derivative of
the other half with respect to time. It is interesting that our acoustic feature vector that
consists of cepstral coefficient, energy, and their deltas naturally appears in this form. Let
X = (x1,X2), and ¥y = (y1,¥2), with x;,%X5,y1,y2 € R, then the symplectic map can be

represented as

oV
yi o= x - aSj) (3.55)
_ aT(Y1)
Y2 = X9 — Ty’l, (356)

where V(.) and T'(.) are two scalar functions that can be chosen arbitrarily. We use two multi-

layer feed-forward neural networks to get a good approximation of these scalar functions [100]

V(u,A,C) = zH:ch(aju), (3.57)
T(u,B,D) = EH:djS(bju), (358)

where S(.) is a nonlinear function such as the sigmoid or hyperbolic tangent, a; is the jth
row of the H x n matrix A, ¢; is the jth element of the H x 1 vector C, b; is the jth row

of the H x n matrix B, and d; is the jth element of the H x 1 vector D. The parameters of
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the neural networks and the parameters of the model are jointly optimized to maximize the
likelihood of the training data. By using these explicit functions to represent the symplectic
map, we no longer need to regularize our objective function, as the map from X to Y is

explicitly continuous.

3.5.2 Joint optimization of the map and model parameters

We will explain in this section how the parameters of the volume-preserving map and the rec-
ognizer model can be jointly optimized to maximize the likelihood of the estimated features.
We will assume that the recognizer is HMM-based. However, this approach can be applied to
any statistical recognizer. We will give this lemma to account for modeling dynamic patterns

with HMM.

Lemma 3.2 Lety' = f(x') be an arbitrary one-to-one volume-preserving map of the random
vector X' at time t in R™ to Y' in R", and let f’A(y) be the estimated likelihood using an
HMM, wherey = y*---yt---yT and T is the length of the pattern. The map f*(.) and the
set of HMM parameters A* jointly minimize the relative entropy between the hypothesized
and the true likelihoods of Y if and only if they also maximize the expected log likelihood
based on the model Epqyy[log Pa(Y)].

Define ®F = (A¥, W¥) to be the set of the recognizer parameters, A¥, and the symplectic

parameters, W¥, at iteration k of the algorithm. Using the EM algorithm, the auxiliary

function [118] to be maximized, with respect to ®F+1 is

Q((I)ka ‘I)k+1) = EP(§|Y,<I>k)[lOgP(Y7 C|q)k+1)|Y7 ‘I)k]7 (359)
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where ¢ € £ is the state sequence corresponding to the sequence of observations x € R**7
that are transformed to the sequence y € ®°*7, and T is the sequence length in frames. In
this case, the hidden variables for the EM algorithm are the HMM states, (‘! for 1 <t < T,
and the complete data is the set of features and HMM states (y*, (") at each instance ¢.
The transformed features y* are observable variables as they are obtained from the observed
feature vector x' by an invertible transformation y* = f(x'). The auxiliary function can be

written as

Qe @) = Y oo ( og P(y, ¢|®*). (3.60)
€=3

Given a particular state sequence ¢, P(y, ¢|®*) can be written as

T

P(y.cl®h) = o []P(C1C @) Py @), (3.61)
t=1
where 7o is the probability of starting the sequence in state ¢°, p(Cth_l, &) is the state
transition probability from ¢*~! to ¢* given the current parameters ® | and P(y|C!, ®*)
is the probability of the observation vector y' € R" given the state ¢! and the current
parameters ®F.

Then, the auxiliary function becomes

P(y,¢|®")
Q(@k,@]ﬂ'l) — ECAR Y Relrs
CEE; P(y|®F)

T
(log Teo + Z (log P(¢CHCY, @Y + log P(y!|Ct, <I>k+1))> . (3.62)

t=1

The updating equations for the HMM parameters based on this formulation are the same

as mentioned in [85], and therefore will not be derived here. To calculate the updating
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equations of the symplectic parameters, we note that

~ L T ~
Ply, ¢l =i|®k) .
53; )§jlogPy|<t @) = 3 S P = o pryic < ),
Ceg

(3.63)
where L is the total number of states.
Therefore, the derivative of the auxiliary function with respect to y; for j = 1,2,---,n
is given by
0Q(®F, 1) "L~ Py, ¢t =1]@%) dlog P(y'|¢! = 1, @k
e o) _ . ZZ y@k') ) 9log PLy” ';y L (o)

If a mixture of densities is used to model each state, then the derivative of the auxiliary

function becomes

IQ(BF, B i ET: Py, ¢t =1, peu = m|®*) dlog P(y'[¢! = 1, pey = m, ®FH1)
3yj I=1 m=1 t=1 p(Y|‘I)k) ayj ’

(3.65)

where p¢t; is the mixture component at time ¢ in the mixture of the state ¢*, and K; is the
number of densities in each mixture.

These equations are written for one input sequence of observations, and a summation over
all training patterns, i.e., sequences of observations, is excluded to simplify the equations.
Since the update equations for the symplectic parameters do not need to explicitly mention
the structure of the recognizer, we will merge the summation over all states and densities
to a summation over densities. These reductions are only to improve the tractability of the

following equations and have no effect on the derivation. After modifying the notation,
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0Q(B*, BF+1) ii P(y, m|®*) dlog P(y'|m, &)

8y] p y|(I)k ay]

, (3.66)

t=1 m=1

where K is the total number of Gaussian PDFs in all HMM states.
We will assume that the recognizer models the conditional PDF of the observation as a

mixture of diagonal-covariance Gaussians and therefore

0Q(®F, Br+1) XT:XK: Py, m|®") (1m; — y%)

: , (3.67)
dy; P(y|®*) Tmi

t=1 m=1

where p,,; and o2, are the mean and the variance of the jth element of the mth PDF,

J
respectively.

In the following, we will derive the updating equation for the four sets of parameters
used in the symplectic map, namely A, B, C, and D. Let the nonlinear function used in
both feed-forward neural networks be the hyperbolic tangent as stated before. Starting
with A and B, to calculate the update equation for a symplectic parameter a,. and b, for
q=1,2,---,H, and for r = 1,2,---, 5, we have to calculate the partial derivative of the
auxiliary function with respect to these parameters. These partial derivatives are related to

the partial derivatives of the auxiliary function with respect to the features by the following

relation:

6Q(;k7 ¢k+1) 6y1j % 6Q(¢k7 Ik+1) 6y2j
+
3y1j 8aqr

8Q(<I>’“, (I)k+1)

Jdag,

; 3.68
ay?j aaqr ( )

<
Il
-

I
.MM‘S
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and

aQ(®F, ®++1) ia@(‘lﬂc,@’““) Dy

, (3.69)
abqr j=1 8y2] ablﬂ"
where
% _ 2T, fo:l (chan;S(apx2)[1 — S?*(apx2)]) for r #j
Oagr 2To, Zle (chaniS(anx2)[1 — S?(anx2)]) — ¢g[l — S?(azx2)] forr=j
(3.70)
% _y gy”“ %, (3.71)
aqr E—1 aqr Y1k
Oy _ idb buiS (bay1)[1 — S%(bry1)]) (3.72)
IR = hOn;Onk hY1 hy1))) .
h=1
and
Oysj _ ) 2w >y (€rbniS(bry)[1 — 52 (byxs)]) for r # j
Obgr 291 I (enbpiS(bry1)[1 — S2(bpxy)]) — dy[1 — S%(byy1)] forr=j.
(3.73)

For C and D, the derivation will follow the same procedure, but the resulting equations

are much simpler. The partial derivative of the auxiliary function with respect to the sym-
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plectic parameter ¢, and d, for ¢ = 1,2,---, H, are related to the partial derivatives of the

auxiliary function with respect to the features by the following relation:

n n
2 2

8Q(<I>’“, (I)k+1) _ Z 8Q(<I>’“, (I)kJrl) 3y1j N Z aQ((I)k7 (I)kJrl) ay2j (3 74)
dey = Y1 deq i1 0Ya; Ocq '
and
8Q(<I>’“, (I)k+1) _ 22: 8Q(<I>’“, (I)kJrl) ay2j (3 75)
8dq =1 8y2j adq ’ ‘
where
O
Wyt - $ag) (3.76)
Cq
8y2j : Y1k 8y2j
— = 3.77
dcy kzzl dcg Oyik ( )
and
o
B = (1 - S by (3.78)
ad,

To update the symplectic parameters in each iteration, the symplectic parameters that
maximize the likelihood can be estimated at each iteration using gradient based optimization
algorithms. Equations (3.68)-(3.78) can be used for updating the symplectic parameters

iteratively until the value of the likelihood is maximized.

78



The steps of the generalized EM iterative algorithm to update the symplectic parameters

and the HMM parameters are as follows:
1. Initialize the symplectic parameters and the HMM parameters.

2. Calculate the transformed feature vectors y using the current symplectic maps and the

input feature vectors as in Equations (3.55) and (3.56).
3. Using the current value of the parameters ®*, estimate the auxiliary function.

4. Using the current HMM parameters, estimate the symplectic parameters that maximize

the auxiliary function by using a gradient-based optimization algorithm.

5. Update the transformed feature vectors y using the current symplectic maps and the

input feature vectors as in Equations (3.55) and (3.56).

6. Estimate the HMM parameters that maximize the auxiliary function using the current

symplectic parameters.
7. Iterate (starting from 3) until convergence.

In our experiments, we used the conjugate gradient algorithm to update the symplectic
parameters at each iteration. The computational complexity of updating the symplectic
parameters using the conjugate gradient algorithm is O(2(n + 1)HN + nH?N), which com-
pares favorably to O(n?N) for linear approaches for large n, where n is the dimension of the
feature vector, H is the number of hidden units in the neural network, and NV is the number

of feature vectors in the training data.

3.5.3 Experiments and results

We will apply the symplectic maximum likelihood transform (SMLT) to two different prob-

lems of high-dimensional probabilistic model estimation. The first is the estimation of the
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joint PDF of an example of order statistics, and the second is the estimation of the joint PDF
of the Mel-frequency cepstrum coefficients of a speech utterance using Gaussian mixture hid-
den Markov model as the hypothesized probabilistic model. In the first set of experiments,
we compare the likelihood obtained at each iteration to the likelihood obtained without
using any transformation of the measurements, and the likelihood obtained by using maxi-
mum likelihood linear transformation (MLLT) of the measurements with all methods having
approximately the same number of total parameters. In the second set of experiments, the
phoneme recognition accuracies obtained by the three methods are compared. In both sets of
experiments, the conjugate gradient algorithm was used to update the symplectic parameters
in each iteration. The number of hidden nodes of the neural network used in constructing
the symplectic map is three in all experiments. Therefore, the total number of symplectic
parameters in each experiment is 3n + 6, where n is the dimension of the feature vector. In
all experiments, initializing the symplectic parameters by very small values compared to the

dynamic range of the original features gave the best results that are reported here.

3.5.3.1 Order statistics

Order statistics are important features that are usually used in classification and coding.
Examples of order statistics are the five largest wavelet coefficients, or the median of a given
set, of values. The joint distribution of a collection of order statistics obtained from a set
of i.i.d. random variables can be calculated exactly given the probability density function
of these random variables [119]. Given N realizations of the random vector x of length
n with {x;}", being iid random variables, let 3 = G(z;). Define y = [y,---y,]. Let
z = [z, 2y be obtained from y by sorting into ascending order and selecting the first A/
values. Let Cy,(y;) and Py, (y;) be the cumulative distribution function (CDF) and PDF of

y; Vi, respectively. Then, the joint PDF of Z is given by
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M
Pg(21, 20,y 2m) = (N]_Vi'M), H1 Py, (2)[1 — Oy, (2a1)| ™. (3.79)

In this experiment, we generated a set of N iid realizations of Gaussian random vectors
{x7}7L, of length n = 100 with zero mean and identity covariance matrix, and transformed
each component to y/ = |z/|. After sorting the one hundred transformed components of each
random vector in ascending order, we took the first 30 components, i.e., M = 30. These
30 components of each realization were used to estimate the symplectic parameters and the
parameters of a Gaussian mixture (GM) probabilistic model of the joint probability density
function of these 30 components. The parameters are estimated to maximize the likelihood
of the training data using the algorithm described before. The log likelihood of the training
data using (SMLT+GM) is compared to the log likelihood achieved using the (MLLT+GM)
approach as described in [55] and discussed briefly in Chapter 2, and to the log likelihood
achieved using the EM algorithm to train a Gaussian mixture model using the same data
without transformation (GM). The hidden variables in this experiment are the identity of
the Gaussian PDF in the mixture. The Gaussian mixture model in the three methods is
initialized using the Linde-Buzo-Gray (LBG) algorithm [120]. The MLLT transform was
initialized with a matrix very close to the identity matrix by using very small off-diagonal
values. The symplectic parameters are initialized by very small values compared to the
dynamic range of the original features. We considered four other random initializations for
the MLLT and the SMLT transforms, and the resulting log likelihoods were the same as
or less than those reported here for both methods. The number of training vectors N was
chosen to be equal to 2 x 10”. The comparison of the three methods is shown in Figure 3.3.
The figure shows significant increase in the log likelihood by using the symplectic map. Since
an increase in the likelihood can be achieved by increasing the number of parameters of the

model, e.g., by increasing the number of Gaussian densities in the mixture, a comparison of
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the number of parameters used in each method is provided in Table 3.3. The table shows
that the increase in the likelihood using SMLT is achieved using fewer parameters than both
GM and MLLT. To compensate for the additional number of transformation parameters
needed by SMLT and MLLT, we used a different number of Gaussian PDFs in the mixture

for each method. The number of Gaussian PDF's used by each method is provided in Table

Comparison of Log Likelihood For Order Statistics
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Figure 3.3 Comparison of Log Likelihoods for Order Statistics

Table 3.3 Total number of parameters for each method.

Method Number of Parameters
GM 1952
MLLT+GM 1937
SMLT+GM 1926
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Table 3.4 Number of Gaussian PDF's in the mixture for each method.

Method Number of PDF's
GM 32
GM-+MLLT 17
GM+SMLT 30

3.5.3.2 Modeling of dynamic patterns using HMM

To test the performance of our approach on modeling patterns of variable length, we take
the speech signal as an example. Most speech recognition systems use a Gaussian mixture
HMM-based recognizer and use the Mel-frequency cepstrum coefficients (MFCC) and their
deltas as the input acoustic features to the recognizer [25]. In our experiments, the 61
phonemes defined in the TIMIT database are mapped to 48 phoneme labels for each frame
of speech as described in [112]. A three-state left-to-right model of each phoneme is trained
using the EM algorithm. The number of mixtures per state ranged from 4 to 13 based on the
number of frames of training data assigned to the state. The SMLT approach is applied to an
input feature vector that consists of 12 MFCC coefficients, energy, and their deltas. These
acoustic features are calculated for the whole training subset of the TIMIT database, and the
parameters of the symplectic map and the HMM models are jointly optimized to maximize
the likelihood as described in the previous section. The SMLT and MLLT transforms are
initialized the same way as in the previous set of experiments. We considered four other
random initializations for the MLLT, and the SMLT transforms and the resulting phoneme
recognition accuracies were the same as or less than those reported here for both methods.
The parameters of the triphone models are tied together using the same approach as in [115].

The phoneme recognition results and the total number of parameters for the three meth-
ods are provided in Table 3.5. It shows an improvement in the recognition accuracy using
the SMLT approach as compared to MLLT and the baseline system. This improvement is

significant compared to previous phoneme recognition results on the TIMIT database [88].
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Table 3.5 Phoneme recognition accuracy (%) on TIMIT for MFCC features and features
generated by MLLT or SMLT.

Recognizer Recognition Accuracy | Number of Parameters
MFCC+GM 73.7% 25407324
MLLT+GM 74.6% 25407311
SMLT+GM 75.6% 25407302

3.5.4 Discussion

A useful special case of the model enforcement approach is that of the symplectic maximum
likelihood transform (SMLT), in which a volume-preserving map is optimized jointly with
the model parameters to minimize the relative entropy. A computationally efficient EM-
based iterative algorithm for SMLT optimization is described. This iterative algorithm was
applied to two important statistical modeling problems: estimation of the joint PDF of order
statistics using a Gaussian mixture, and modeling the MFCC coefficients of the speech signal
using an HMM. In the first application, an improvement in the log likelihood is achieved using
the SMLT approach compared to MLLT and compared to using the original features. This
improvement is achieved with a total number of parameters less than other methods in both
cases. Phoneme recognition experiments also show significant improvement in recognition
accuracy achieved by SMLT compared to the other two methods.

The model enforcement approach is intended to provide a general framework for many
interesting feature transformations to reduce inaccuracy of statistical models. This section
provides two example applications; several other special cases can be defined by the choice
of the parametric form of the map, constraints on the determinant of its Jacobian matrix,
and the form of the parameterized likelihood function. The choice of a certain solution is
related to the complexity of the problem and the nature of the features used in the system.
The main advantage of this general formulation is the avoidance of strict assumptions about

the features or the model as in previous approaches.
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3.6 Large-Vocabulary Conversational Speech
Recognition Using SMLT

In this section, we test the performance of the SMLT on two large-vocabulary, conversational
speech recognition tasks: IBM’s Superhuman test [121] and the DARPA 2003 Rich Tran-
scription (RT03) test. Conversational speech recognition is a significantly more difficult task
than TIMIT phone recognition. Also, the current work uses features computed by a linear
projection of spliced cepstra, while the earlier work used static and delta MFCC features. As
will be discussed further, this is an important difference because the current implementation
of SMLT imposes a partition of the input feature space into two half-spaces. A natural
partition exists for static and delta features, but no such partition exists for the projected

features.

3.6.1 Experiments

We tested the SMLT in a number of configurations on two large-vocabulary, conversational
tasks: IBM’s Superhuman test [121] and the DARPA 2003 Rich Transcription (RT03) test.
The Superhuman test comprises data from five sources of conversational American English,
namely the Switchboard portion of the 1998 Hub 5e test (swb98), one meeting from the ICSI
meeting corpus [122] (mtg), two collections of call center data (ccl and cc2), and the test set
from the IBM Voicemail corpus [123] (vm). The RT-03 test material is two-party telephone
conversations, like the swb98 portion of the Superhuman test, but some of the material was
collected more recently, and it is about three times longer than swb98.

The raw features for the recognition system used in the tests were 18-dimensional MFCC
features computed every 10 ms from 25-ms frames with a Mel filter bank that spanned
0.125-3.8 kHz. The recognition features were computed from the raw features by splicing
together nine frames of raw features (+4 frames around the current frame), projecting the

162-dimensional spliced features to 60 dimensions using an LDA projection, and then option-
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ally transforming the 60-dimensional projected features with one or more transforms intended
to reduce the mismatch between the statistics of the final features and the constraints of
the diagonal-covariance Gaussian mixtures that model the HMM observation densities. We

tested four different configurations of the LDA projection and subsequent transforms:
L the LDA projection alone,

L+S the LDA projection followed by a nonlinear SMLT,

L+M the LDA projection followed by a linear MLLT, and

L+M+4S the LDA projection, then a linear MLLT, then a nonlinear SMLT.

We tested these configurations in order to answer two questions. First, because the SMLT is
a nonlinear transform, will an LDA+SMLT cascade match or improve on the performance
of an LDA+MLLT cascade? Second, will an LDA+MLLT+SMLT cascade outperform an
LDA+MLLT cascade, given the flexibility that the nonlinear SMLT offers?

The acoustic model training data were 315 hours of material from the Switchboard,
Switchboard Cellular, and Callhome English corpora. For all five feature sets, an acoustic
model comprising 4807 context-dependent states and 156-K diagonal-covariance Gaussian
mixtures was used. The states were clustered using decision trees that could ask ques-
tions about phone identity within the current word in a +5-phone window. The number of
Gaussian mixtures assigned to a state was chosen by maximizing the Bayesian Information
Criterion (BIC). The decision trees and allocation of mixture components to states were
based on the L4+M feature space.

The Superhuman test was run using an interpolation of four back-off trigram language
models (LMs) using modified Kneser-Ney smoothing. The data used to train the four com-
ponent LMs were 3-M words from Switchboard, 160-M words from Broadcast News, 1-M
words from Voicemail, and 600-K words of call center data [121]. The RT03 test was run

using an interpolation of four back-off 4-gram LMs using modified Kneser-Ney smoothing.
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Table 3.6 Word error rates (%) on the IBM Superhuman test data and the RT-03 test
data for features generated with an LDA transform (L), LDA+SMLT transform (L+S),
LDA+MLLT transform (L+M), or LDA+MLLT+SMLT transform (L+M+S).

Superhuman
transform swb98 mtg ccl cc2 vm all RTO03
L 47.6 58.0 68.1 48.5 40.2 52.5 -
L+S 46.9 57.4 68.2 47.9 39.3 51.9 -
L+M 43.8 51.7 65.6 41.7 354 47.6 39.9
L+M+S 43.5 51.8 65.6 41.4 354 47.5 39.7

The component LMs were trained on 3-M words of Switchboard, 58-M words of web data
collected and distributed by the University of Washington, 3-M words of Broadcast News
relevant to Switchboard topics, and 7-M words from the English Gigaword corpus [124]. De-
coding was done using a Viterbi decoder operating on a statically compiled decoding graph

and employing a hierarchical Gaussian acoustic model [124].

3.6.2 Results and discussion

The results for our tests of the various transform configurations on the Superhuman and RT03
tests are presented in Table 3.6. A comparison of the L, L4S, and L4+M results shows that
in almost all cases, the use of an SMLT or MLLT transform improves performance over using
only the LDA projection, and that the LDA4+MLLT cascade consistently outperforms the
LDA+SMLT cascade. This can be partially attributed to the fact that MLLT has roughly
20 times more parameters than the current implementation of SMLT. It should also be noted
that the LDA solution is invariant to full-rank linear transforms such as the MLLT, but that
no such invariance exists for nonlinear transforms such as the SMLT. A comparison of the
L+M and L+M+S results shows a small advantage for the LDA+MLLT+SMLT cascade,
especially on the swb98 and RT03 tasks — tasks that are well matched to the training data.
A number of factors may account for the relatively small improvement obtained with the

SMLT: (1) the limited number of parameters in the SMLT, (2) the lack of a natural partition
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of the LDA+MLLT feature space into two half-spaces (recall that the implementation used
for the reflecting symplectic transform imposes a partition of the feature space), and (3)

optimization of the decision trees and mixture allocation to the LDA+MLLT feature space.

3.7 Global versus Local Maps

We will consider here the problem we touched on in the introduction of this chapter, which
is the level at which the inaccurate model problem should be solved. We can think of the
overall HMM recognizer, for example, as an estimator of a single PDF that describes the
likelihood of the utterance, and the assumptions of the HMM like the Markovian property
and independence of current observations on all previous and coming states as constraints on
this PDF'. In this case, the observations corresponding to this utterance should be mapped
to a new feature space that better satisfies these constraints. On the other extreme, we can
consider each Gaussian PDF in each state’s mixture Gaussian PDF as imposing constraints
on the observations that we should find a new feature space to satisfy. In large vocabulary
speech recognition systems, there are tens of thousands of Gaussian PDFs, thus this ap-
proach is impractical. Between these two extremes, there are many options that we would
like to discuss here. But before discussing the advantages and disadvantages of each option,
we should discuss a very important issue, namely, the comparison of likelihoods based on
different observations. In general, we cannot compare likelihoods based on different observa-
tions, but if these observations are generated by volume-preserving maps from the original
feature space, then we can compare them without the need for any scaling or normalization.

This important advantage is due to the relation

P(Y)ly=rx = P(x) (3.80)
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for any volume-preserving map y = f(x). Clearly, this relation is valid also for conditional
PDFs.

Returning to the number of maps and the level at which the map should be used, we recall
the traditional tradeoff between increasing the number of parameters in a model to get good
approximation results, and minimizing them to avoid the increase of the computational and
storage requirements, and the necessity of a large amount of data to get reliable estimates of
these parameters. Also the ability of the model to generalize to unseen data may be affected
by increasing the number of the parameters above a certain limit. These issues, like the
tradeoff between the approximation error and the generalization error and the complexity
of the model, are also application dependent. For example if the differences between the
testing data and the training data for a certain application are minimal, then this may favor
concentrating on the approximation error and trying to use more parameters in the model.
There are three reasonable choices, depending on the task, the size of the available training
data, the environment, and many other factors. The first is to try to find a global map that
will decrease the error due to the conditional PDFs’ constraints. The main advantage of
this approach is the smaller number of parameters which we need to optimize, and therefore
the smaller size of the required training data. On the other hand, the main disadvantage is
that training data belonging to different phonemes or allophones may need different maps
to satisfy the model constraints. Given sufficiently large training data, we should expect
an improvement in the performance by using class-dependent maps. The second choice is
to use different maps for different clusters of phonemes or allophones. Phonemes can be
clustered based on different manner of articulation, or based on the divergence between their
probabilistic models. Finally, we can use phoneme-dependent maps or allophone-dependent

maps, if we have large training data to train thousands of parameters.
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CHAPTER 4

CLASS-DEPENDENT FEATURES DESIGN

In statistical classification and recognition problems with many classes, it is commonly the
case that different classes exhibit wildly different properties. In this case it is unreasonable to
expect to be able to summarize these properties by using features designed to represent all the
classes. In contrast, features should be designed to represent subsets that exhibit common
properties without regard to any class outside this subset. The value of these features for
classes outside the subset may be meaningless, or simply undefined. The main problem,
due to the statistical nature of the recognizer, is how to compare likelihoods conditioned on
different sets of features to decode an input pattern.

Here we will introduce a class-dependent feature design that uses MLE or discriminative
training algorithms like MCE and MMI to design a nonlinear mapping of the original feature
space for each class. It should be noted that class here could mean a single state, phoneme,
or a cluster of phonemes. The formulation of the approach is completely independent of the
class choice. An important property of our approach is the class-dependency in the strong
sense, which means that we do not need to define meaningless models to compensate for the
likelihood differences. This approach avoids the need of having a conditional probabilistic
model for each class and feature type pair, and therefore decreases the computational and
storage requirements of using heterogeneous features. We present in this work algorithms
to calculate the class-dependent features that generalize the model enforcement approach
introduced in Chapter 3 to the case of using class-dependent transforms instead of a global

transform. We apply our approach to a hidden Markov model (HMM) automatic speech
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recognition (ASR) system. We use a nonlinear class-dependent volume-preserving trans-
formation of the features to optimize the objective function. We test two criteria as our
objective function—namely maximum likelihood and maximum conditional mutual informa-
tion. In Section 4.1, we give a brief overview of previous approaches to using class-dependent
features in ASR problems. In Section 4.2, the problem is formulated and a solution based on
volume-preserving maps is introduced. A maximum likelihood criterion for optimizing the
class-dependent features is discussed in Section 4.3. A maximum conditional mutual infor-
mation criterion is described in Section 4.4 to jointly estimate the parameters of the feature
transform and the parameters of the model. Finally, using a generalized probabilistic decent
algorithm is suggested for discriminative training of the parameters of the class-dependent

transforms in Section 4.4.

4.1 Introduction

The class-dependent features can be looked at as a method of dimensionality reduction in
classification [7]. Unlike other methods of dimensional reduction, it is based on sufficient
statistics and results in no theoretical loss of performance. Statistical classifiers lose informa-
tion necessary for classification and recognition in two ways. The first is due to reducing the
given data to a set of features, and the second is due to approximating the true joint PDFs of
the features. The former loss decreases as the dimensionality of the features increases, while
the latter increases as the dimensionality of the features increases. Class-dependent features
avoid this compromise by allowing more information to be kept for a given maximum feature
dimension. This is clearly at the expense of increasing the computational requirements of
the system. Class-dependent features are motivated by the fact that different classes have
different salient characteristics that may require different features.

Many recent speech recognition systems use class-dependent feature streams to achieve

more robustness and better performance [58]. Using different feature streams within each
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recognizer allows the overall system to benefit from the ability of these streams to reveal
complementary information about the original speech signal. The main problem, due to the
statistical nature of the recognizer, is how to compare likelihoods conditioned on different
sets of features to decode a given utterance [10]. The previous approaches to this problem
include model-based approaches and feature-based approaches. In model-based approaches,
the problem is solved by either completely abandoning the statistical structure of the rec-
ognizer, or by adding extra reference models that have no physical meaning but are used
to normalize the likelihoods to be comparable statistically [10]. The main problem with the
latter approach is how to train these reference models. They are synthetic entities that have
no physical meaning at all, so there have been a variety of suggestions to train these models.
They range from taking all other phones in the phone set to train the reference model to tak-
ing a very small set of similar phones in the phone set. The feature-based approach restricted
the class-dependent features to features generated by class-dependent linear transforms of
an original set of features [11].

The majority of previous work on discriminant analysis [68] of acoustic features for speech
recognition focused on finding a single projection of the features that maximizes the dis-
crimination among the phonemes. The discrimination among phonemes was traditionally
measured by the ratio of the within-class covariance and the between-class covariance as in
LDA, and more recently [56], [68], [79], the linear discriminant analysis approaches like LDA
and HDA are formulated as maximum likelihood problems. Gales [11] recently focused on
generalizing the existing projection approaches to multiple subspace projections and called
them multiple LDA and multiple HLDA. Realizing the importance of keeping the likelihoods
based on these multiple observations comparable, he generalized the idea of sharing a model
of the PDF of the complementary subspaces between different classes in the same cluster.
His work, like all previous work on discriminant analysis of acoustic features, is based on
linear projection of the original feature space. It shares with all previous work [10, 67] on

multiple observations the need for “noise-only” models to represent the PDF's of unimportant
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dimensions. In other words, the class-dependence of the observations is in the weak sense.

In the weak sense class-dependency, features have observable values for all classes, but
the features and some class variables are conditionally independent given a set of classes [12].
This increases the computational and the storage requirements of the system, and results in
the introduction of meaningless models that degrade the performance of the recognizer. Fea-
tures are said to be class-dependent in the strong sense if they are assumed to be observable
only for one class or cluster of classes but undefined for the rest of the classes. The need for
class-dependence in the strong sense is motivated not only by the difficulty of building the
“noise-only” or the “antiphoneme” models and the possible degradation in performance due
to building such explicit models, but also by the research in acoustic phonetics that define
distinctive features that can characterize any phoneme [125]. The values of most of these
distinctive features are not defined for every phoneme. In other words, these distinctive
features are class-dependent in the strong sense. Developing a mathematical framework and
algorithms for designing statistical recognition systems that use class-dependent features in
the strong sense is one of the first requirements for developing a speech recognition system
based on these distinctive features.

In this chapter, a nonlinear strong-sense class-dependent feature transformation for pat-
tern recognition is described. It is applied to an HMM speech recognizer. The feature
streams are optimized to minimize an estimate of the relative entropy between the actual
conditional likelihood and its estimation based on the model, or the a posteriori probability
and its estimate using HMM and the language model. We will use here the notion of class-
dependent features for ASR to represent using different features for different phonemes or

different clusters of phonemes that are constructed using some criterion.
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4.2 Problem Formulation

The Bayes classification rule minimizes the probability of error if the underlying distribution

of the data is known. In its original format, it assumes that the same features are used for

all classes; the Bayes classification rule for a set of classes ¢; for i =1,2,--- | K is
c = P, 4.1
¢ arg CE{I{I,_%_)’(K} cix (¢[x), (4.1)

where K is the number of classes, x is the observation vector, and Pex (c|x) is the a posteriori

probability of the classes. This maximization can be reduced to

c = P P(c). 4.2

¢ = arg max Pxc(x|c)P(c) (4.2)

Let us now define a set of functions {f;(.)}X, such that y; = f;(x) is an arbitrary one-
to-one map of the random vector X in R” to Y; in R".

The relation between the joint class-conditional probability of X and Y is

PX\C’(X|Ci)

Py, c(fi(x)]e;) = |det(T 7, (x))]’

(4.3)

where det(Jf,(x)) is the determinant of the Jacobian matrix of the map f;(.) at x [96].
Therefore, the Bayesian classification rule for the classifiers that use a set of class-

dependent features, {y;}X,, becomes

Py, jc(fi(x)|c)P(c) |det (Jf,(x))]. (4.4)

¢ = arg max
Ce{lzaK}

Equation (4.4) shows that we can design strong-sense class-dependent features for any
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statistical recognition or classification system by taking the determinant of the Jacobian
matrix into consideration in the decision rule.

An important special case that simplifies the decision rule is volume-preserving maps.
The Bayesian classification rule for the classifiers that use a set of class-dependent features

{y:}E | generated using a set of volume-preserving maps becomes

¢ = argce{rﬂai{[{}PYz‘Cz(fZ(X”Cl)P(CZ) (45)

This means that the decoding is unaffected by using class-dependent volume-preserving

transforms.

4.3 A Maximum Likelihood Approach

To train the parameters of these class-dependent transforms to minimize the relative entropy
between the hypothesized and the true likelihood, the following lemma generalizes Theorem

3.1 in Chapter 3 for the case of strong-sense class-dependent features.

Lemma 4.1 Let y! = fi(x") fori = 1,--- K be arbitrary one-to-one volume-preserving
maps of the random vector X' at time t in R™ to Y! in R", and let y*' = y! if & = ¢,
y = yl---yt---y?, T is the utterance length in frames, and PA(Y|C) be the estimated
likelihood using an HMM, where A = {A;}X,. The set of maps {ff ()}, and the set of
parameters {A;}E | jointly minimize the expected relative entropy between the hypothesized
and the true likelihood of Y if and only if they also mazximize the expected log likelihood based

on the model, Epy cy[log PA(Y]|C)].
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Proof: The expression for the expected relative entropy after an arbitrary transformation

= fi(x") of the input random vector X in R" is
R(P(Y|C), PA(Y|C)) = —H(P(Y|C)) = Epr.cy |log (P(YIO))|, (4.6)

where H(P(Y|C)) is the conditional differential entropy of the random vector Y [90].
The relation between the output conditional differential entropy and the input conditional

differential entropy is in general

H(P(Y|C)) < H(P(X|C)) +Z/ (x, c) log (|det (I, (x))]) dx, (4.7)

where P(X|C) is the conditional probability density function of the random vector X, for an
arbitrary transformation y! = f;(x") of the random vector X’ in R”, with equality if f;(x")
is invertible [96].

Therefore, for a volume-preserving map y! = f;(x"), the expected relative entropy can be

written as
R(P(Y|C), PA(Y|C)) = —H(P(X|C)) = Eprx.c) |log Pa(Y|C)]| . (4.8)

Equation (4.8) proves the lemma. |

The problem of maximizing Ep(y|c)[log Pa(y|c)] can be solved using efficient algorithms
based on the incremental expectation maximization (EM) algorithm. Our approach differs
from previous approaches to class-dependent feature transform for speech recognition in two
ways. First, the feature transform is not necessarily linear. Second, it is class-dependent
in the strong sense: the conditional PDF of each features stream is calculated for the cor-
responding class only. It should be noted that all linear class-dependent maps are special

cases of Lemma 4.1, as any linear map is a volume-preserving map multiplied by a scalar.
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We showed that by using a set of volume-preserving maps, the problem of minimizing
the relative entropy between the actual class-conditional PDFs and their parametric models
is reduced to maximizing the likelihood of the training data in the new strong-sense class-
dependent feature spaces. In the following, we use the reflecting symplectic map described
in Chapter 3 to generate the new set of features. Using the algorithm described in Section
3.4, the values of the symplectic map parameters can be updated in each iteration using any

gradient-based optimization algorithm [126].

4.3.1 Results on the TIMIT database

The symplectic maximum likelihood algorithm described in Chapter 3 is used to study
the optimal class-dependent feature space for diagonal-covariance Gaussian mixture HMM
modeling of the TIMIT database. The phoneme set is divided into three clusters: silence,
vowel-like, and consonants. We associated with each cluster a symplectic map that is trained
to maximize the likelihood of the training data that correspond to the phonemes member of
the cluster.

The baseline 26-feature vector consists of 12 Mel-frequency cepstrum coefficients (MFCC),
energy, and their deltas. In each iteration, the new feature vector is calculated using the
current symplectic transformation parameters, then the maximum likelihood estimates of
the HMM model parameters are calculated. Then, the maximum likelihood estimates of
the symplectic map parameters are calculated using the conjugate-gradient algorithm. After
the iterative algorithm converges to a set of locally optimal HMM and symplectic parame-
ters, the training data are transformed by the symplectic map yielding the final symplectic
maximum likelihood transform (SMLT) feature vector for each cluster of phonemes.

In our experiments, the 61 phonemes defined in the TIMIT database are mapped to 48
phoneme labels for each frame of speech. These 48 phonemes are collapsed to 39 phoneme for

testing purposes as in [112]. A three-state left-to-right model for each triphone is trained.
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The number of mixtures per state was varied between 3 and 13 based on the number of
observations in the training data assigned to the state. The parameters of the recognizer
and the symplectic map are trained using the training portion of the TIMIT database. The
parameters of the triphone models are then tied together using the same approach as in [115].

To compare the performance of the proposed algorithm with other approaches, we gener-
ated acoustic features using independent component analysis (ICA) and maximum likelihood
linear transform (MLLT). We tested both approaches using the same three-cluster catego-
rization of the phoneme set used with SMLT. A cluster-dependent feature vector is designed
for each cluster using maximum likelihood ICA and MLLT. We used the linear ICA approach
described in [52] and implemented MLLT as described in [55].

Testing this recognizer, using the test data in the TIMIT database, we get the phoneme
recognition results in Table 4.1. These results are obtained by using a bigram phoneme
language model and by keeping the insertion error around 10%. The table compares SMLT
recognition results to the ones obtained by MFCC, ICA, and MLLT.

Table 4.1 Phoneme recognition accuracy (%) on TIMIT for MFCC features and class-
dependent features generated by ICA, MLLT, or SMLT.

Acoustic Features | Recognition Accuracy
MFCC 73.7%
ICA 73.9%
MLLT 74.5%
SMLT 75.5%

4.3.2 Results on the Superhuman and RT03 databases

We tested the class-dependent SMLT also in a number of configurations on two large-
vocabulary, conversational tasks: IBM’s Superhuman test [121] and the DARPA 2003 Rich
Transcription (RT03) test. The Superhuman test comprises data from five sources of conver-

sational American English, namely the Switchboard portion of the 1998 Hub 5e test (swb98),
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one meeting from the ICSI meeting corpus [122] (mtg), two collections of call center data
(ccl and cc2), and the test set from the IBM Voicemail corpus [123] (vm). The RT-03 test
material is two-party telephone conversations, like the swb98 portion of the Superhuman test,
but some of the material was collected more recently, and it is about three times longer.
The raw features for the recognition system used in the tests were 18-dimensional MFCC
features computed every 10 ms from 25-ms frames with a Mel filter bank that spanned
0.125-3.8 kHz. The recognition features were computed from the raw features by splicing
together nine frames of raw features (+4 frames around the current frame), projecting the
162-dimensional spliced features to 60 dimensions using an LDA projection, and then option-
ally transforming the 60-dimensional projected features with one or more transforms intended
to reduce the mismatch between the statistics of the final features and the constraints of
the diagonal-covariance Gaussian mixtures that model the HMM observation densities. We

tested three different configurations of the LDA projection and subsequent transforms:

L+M the LDA projection followed by a linear MLLT};
L+M+S the LDA projection, then a linear MLLT, then a nonlinear SMLT; and

L+M+S2 the LDA projection, then a linear MLLT, then two class-dependent SMLTSs, one

for speech states and one for nonspeech states.

We tested these configurations in order to answer the question: Can we obtain additional
improvements in recognition performance with multiple, class-dependent SMLTs, taking full
advantage of the SMLT’s volume-preserving property?

The acoustic model training data were 315 hours of material from the Switchboard,
Switchboard Cellular, and Callhome English corpora. For all three feature sets, an acoustic
model comprising 4807 context-dependent states and 156-K diagonal-covariance Gaussian
mixtures was used. The states were clustered using decision trees that could ask ques-
tions about phone identity within the current word in a +5-phone window. The number of

Gaussian mixtures assigned to a state was chosen by maximizing the Bayesian Information
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Table 4.2 Word error rates (%) on the IBM Superhuman test and the RT-03 test for
features generated with LDA+MLLT transform (L+M), LDA+MLLT+SMLT transform
(L+M+S), or with an LDA+MLLT transform followed by one of two class-dependent SMLT's
(L+M+S2).

Superhuman
transform swh98 mtg ccl cc2 vm all RTO03
L+M 43.8 51.7 65.6 41.7 354 47.6 39.9
L+M+S 43.5 51.8 65.6 41.4 354 47.5 39.7
L+M+S2 43.5 51.9 65.4 41.4 35.3 47.5 39.7

Criterion (BIC). The decision trees and allocation of mixture components to states were
based on the L+M feature space.

The Superhuman test was run using an interpolation of four back-off trigram language
models (LMs) using modified Kneser-Ney smoothing. The data used to train the four com-
ponent LMs were 3-M words from Switchboard, 160-M words from Broadcast News, 1-M
words from Voicemail, and 600-K words of call center data [121]. The RTO03 test was run
using an interpolation of four back-off 4-gram LMs using modified Kneser-Ney smoothing.
The component LMs were trained on 3-M words of Switchboard, 58-M words of web data
collected and distributed by the University of Washington, 3-M words of Broadcast News
relevant to Switchboard topics, and 7-M words from the English Gigaword corpus [124]. De-
coding was done using a Viterbi decoder operating on a statically compiled decoding graph
and employing a hierarchical Gaussian acoustic model [124].

The results for our tests of the various transform configurations on the Superhuman and
RTO03 tests are presented in Table 4.2. We see no significant improvement with the two
class-dependent SMLTs over the L4+M+4S results. This result is consistent with results
on the TIMIT database reported here and in [126] for the SMLT, results reported for class-
dependent MLLTS in [55], and results reported on multiple LDA (MLDA) and multiple HDA
(MHDA) in [11]. We argue that transforms trained using MLE on observations correspond-

ing to specific classes are less likely to reduce recognition error compared to MLE global
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transforms and a discriminative criterion should be used to estimate the class-dependent

transforms.

4.4 Discriminative Class-Dependent Features Design

To train the parameters of these class-dependent transforms to minimize the expected rel-
ative entropy between the hypothesized and the true a posteriori probability, the following
lemma generalizes Theorem 3.1 in Chapter 3 for the case of strong-sense class-dependent

features.

Lemma 4.2 Let y! = fi(x') fori=1,---,K be arbitrary one-to-one maps of the random
vector Xt at time t in R™ to YL in R™, and let y' =yt ifd =ci, y=y'---y'---y", T is the
utterance length in frames, and PA(c|y) be the a posteriori probability estimated using the
HMM and the language model, where A = {A;}E . The set of maps {f(.)}E, and the set of
parameters {A;}E | jointly minimize the expected relative entropy between the hypothesized
and the true a posteriori probability if and only if they also mazimize the conditional mutual
information between the classes and the features given the model I1(Y,C|A).

Proof: The expression for the expected relative entropy after an arbitrary transformation

yi = fi(x') of the input random vector X" in R" is
R(P(CIY), PA(CIY)) = —H(P(CIY)) = Epcy) |log (PA(CIY))] . (4.9)

where H(P(C|Y)) is the conditional differential entropy of the random variable C' [90].
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The relation between the output conditional differential entropy and the input conditional

differential entropy is in general

H(P(CY)) < H(P(C[X)), (4.10)

where P(c|x) is the a posteriori probability density function given the random vector X,
for an arbitrary transformation y! = f;(x") of the random vector X" in ", with equality if
fi(x!) is invertible [96].

Therefore, for a one-to-one map y! = f;(x"), the relative entropy can be written as

R(P(CIY), PA(CIY)) = —H(P(C|X)) = Brey) [log (PA(CIY))] . (411)
But
I(Y,CIA) = Epery [1og (PA(C|Y)> ~log (P(C))] . (4.12)
Therefore,
R(P(C|Y),PA(C|Y)) = —H(P(C|X))
—I(Y,C|A) — Epcy) [log (15(0))] . (4.13)
Equation (4.13) proves the lemma. m

It should be noted that mutual information is invariant to any one-to-one map, and
therefore maximizing the conditional mutual information given the model is equivalent to
improving our estimate of the mutual information by improving our estimate of the a poste-
riori probability density function using the model as proved by Lemma 4.2. In the previous

section, we showed that the decoding is unaffected by using class-dependent features gener-
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ated by volume-preserving maps. So in this section, we use the reflecting symplectic map
described in Chapter 3 to generate the new set of features. Using the algorithm described in
Section 3.4, the values of the symplectic map parameters can be updated in each iteration
to maximize the conditional mutual information given the HMM model, I(Y, C|A), instead
of the likelihood using any gradient-based optimization algorithm [127]. In this case, the
HMM parameters are updated using the extended Baum-Welch algorithm [14] to maximize

the conditional mutual information.

4.4.1 Results on the TIMIT database

The symplectic maximum conditional mutual information approach is used to study the op-
timal feature space for diagonal-covariance Gaussian mixture HMM modeling of the TIMIT
database. The phoneme set is divided to three clusters: silence, vowel-like, and consonants.
We associated with each cluster a symplectic map. The parameters of the symplectic maps
are trained to maximize an empirical estimate of the conditional mutual information between
the generated features and the HMM states.

The baseline 26-feature vector consists of 12 Mel-frequency cepstrum coefficients (MFCC),
energy, and their deltas. In each iteration, the new feature vector is calculated using the
current symplectic transformation parameters; then the maximum conditional mutual infor-
mation estimates of the HMM model parameters are calculated using the extended Baum-
Welch algorithm [14]. Then, the maximum conditional mutual information estimates of the
symplectic map parameters are calculated using the conjugate-gradient algorithm. After the
iterative algorithm converges to a set of locally optimal HMM and symplectic parameters,
the training data are transformed by the symplectic map yielding the final symplectic max-
imum conditional mutual information transform (SMCMI) feature vector for each cluster of

phonemes.
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In our experiments, the 61 phonemes defined in the TIMIT database are mapped to 48
phoneme labels for each frame of speech. These 48 phonemes are collapsed to 39 phonemes
for testing purposes as in [112]. The number of mixtures per state was varied between 3 and
13 based on the number of training observations assigned to the state. The parameters of
the recognizer and the symplectic map are trained using the training portion of the TIMIT
database.

To compare the performance of the proposed algorithm with other approaches, we gen-
erated acoustic features using the class-dependent SMLT approach described in the previous
section. Testing this recognizer, using the test data in the TIMIT database, we get the
phoneme recognition results in Table 4.3. These results are obtained by using monophone
HMM models and a bigram phoneme language model and by keeping the insertion error
around 10%. The table compares strong-sense class-dependent SMCMI recognition results
to the ones obtained by MFCC, and strong-sense class-dependent SMLT. It shows that the
class-dependent symplectic maps trained using an MCMI criterion outperform those trained
using a maximum likelihood criterion by 0.5%.

Table 4.3 Phoneme recognition accuracy (%) on TIMIT for MFCC features and class-
dependent features generated by SMLT or SMCMI.

Acoustic Features | Recognition Accuracy
MFCC 63.1%
SMLT 64.3%
SMCMI 64.8%

4.4.2 Alternative implementation using the GPD algorithm

We will use an iterative algorithm based on the generalized probabilistic descent algorithm
(GPD) [15] to estimate the parameters that minimize an empirical estimate of the recogni-

tion error that is usually used in MCE-based algorithms.
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Based on Bayes decision theory, the actual recognition error is a zero-one function that
we cannot use as a criterion to optimize our parameters due to its discontinuity, so the GPD

algorithms use a smooth misclassification measure given by

1

en(x,A) = ﬁ S {log Pa(C,[x)}’ " log Pa(Cul). (4.14)
0,97k
where Py (Cy|x) is the a posteriori probability of the correct class, Py (C,|x) is the a posteriori
probability of the ¢th class, and § is a positive constant [15].
Using a set of class-dependent symplectic maps {fx}2,, let us denote the parameters
of each map f(.) by Wy, where Wy = (Ay, By, Ci, Dy) as defined in Section 3.5. Using

class-dependent observation vectors, the misclassification measure becomes

1
B

1
er(x,AW) = | > {log Pa(Cylyy)}’|  —log Pa(Cklys), (4.15)
7,97k
where y, = f,(x) and W = [W W, --- Wg].
Then a loss function that is a smooth monotonically increasing function of this misclas-
sification measure is defined. We will use the sigmoid function that is usually used in GPD

algorithms

1
1 + exp(—(aeg(x, A, W)) + 7))’

0i(x, A, W) = (4.16)

for > 0.
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. vati _ w .. v
Given a set of observations ® x!, x2, ,xM} we can define an empirical average

cost as

LA, W) = SN L(x WL ALY € Cy), (4.17)

where

0 if z is false

1 if 2 is true .

This well-defined cost function can be conveniently minimized by a gradient decent al-

gorithm, using the following adaptation rule:
Wi =W, —e(t)VL(A, W) |w=w,, (4.18)

where W, denotes the features mapping parameter set in the ¢th iteration, and {e(t)} is a

set, of positive numbers that satisfy

and

ZEZ(t) < oo as N — c0.

t=1
The GPD approach guarantees also the convergence of this optimization problem in
probability, when we update the parameters adaptively for each new utterance.
We used the same baseline system described before to test the algorithm on the TIMIT
database. The phoneme set is divided to three clusters: silence, vowel-like, and consonants.
We associated with each cluster a symplectic map, and the parameters of the symplectic maps

are trained jointly with the HMM parameters using the MCE criterion after setting v = 0,
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B =1, and o = 1. The symplectic parameters are trained using the GPD algorithm over
batches of the training data of 1000 frames each, while updating the HMM parameters every
10 iterations. Testing this recognizer, using the test data in the TIMIT database, we get the
phoneme recognition results in Table 4.4. These results are obtained by using monophone
HMM models and a bigram phoneme language model, and by keeping the insertion error
around 10%. The table compares the recognition results of the class-dependent symplectic
maps trained using the MCE criterion (SMCE) to the ones obtained by MFCC, and the
class-dependent SMLT. The results show that the class-dependent symplectic maps trained

using MCE criterion outperform those trained using MLE.

Table 4.4 Phoneme recognition accuracy (%) on TIMIT for MFCC features and class-
dependent features generated by SMLT or SMCE.

Acoustic Features | Recognition Accuracy
MFCC 63.1%
SMLT 64.3%
SMCE 64.7%

Alternatively, we can use MCMI-based or MCE-based algorithms to optimize W such
that the empirical average cost is minimized, while using the expectation maximization

algorithm to optimize the model parameters A.
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CHAPTER 5

DISCRIMINATIVE DIMENSIONALITY
REDUCTION AND FEATURES SELECTION

Classification and recognition systems can be divided into two groups: generative (or in-
formative) and discriminative [128]. In generative systems, the classification or recognition
is done by examining the likelihood of each class producing the features and assigning it
to the most likely class, while in discriminative systems, the focus is on modeling the class
boundaries or the class membership probabilities directly. Examples of the former are Fisher
discriminant analysis, hidden Markov models (HMM) trained using maximum likelihood esti-
mation, and naive Bayes. Examples of the latter include logistic regression, neural networks,
and support vector machines (SVM). Discriminative approaches are known to be robust
against errors in structural assumptions [80]. This property arises from a precise match be-
tween the training objective and the criterion by which they are subsequently evaluated. On
the other hand, generative models deal effectively with uncertain or incomplete examples.
Several approaches have been proposed for merging the generative and the discriminative
methods. Examples of these approaches are hybrid systems like artificial neural networks
and HMM (ANN/HMM) systems [23], and training the generative systems based on a dis-
criminative criterion. For example in speech recognition, HMM is a generative model that
can be trained using minimum classification error (MCE) [40] or maximum mutual informa-
tion (MMI) criterion [13]. In this chapter, we will suggest merging the generative and the

discriminative methods by using a generative model for the recognizer, but selecting its
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input features based on a discriminative criterion. We will describe also a method for jointly
optimizing the features and the recognizer model based on discriminative criteria.

In Chapter 3, we introduced a model enforcement approach to the problem of acoustic
feature design for speech recognition. We proved that optimizing the features to satisfy
the model constraints will decrease the recognition error. But one may wonder where this
original feature space comes from. An important step required before designing features that
satisfy the probabilistic model of the recognizer is to provide a compact representation of the
raw training data. This step can be based on knowledge-based or data-driven approaches.
In experiments on the TIMIT database in Chapter 3, the original feature vector consisted
of the MFCC coefficients, energy, and their deltas, which is an example of knowledge-based
approaches. In experiments on the Superhuman and RT03 databases in Chapter 3, the
original feature vector consisted of LDA generated features, which is an example of data-
driven approaches.

In this chapter, we will introduce discriminative approaches to acoustic feature selection
and design that try to maximize the conditional mutual information between the features
and the speech units or to minimize an empirical estimate of the recognition error.

The first section describes an algorithm for feature selection based on mutual information
maximization and its application to selecting an acoustic-features representation of phono-
logical features. In Section 5.2, the algorithm is applied to features selection for phoneme
recognition. An interpretation of LDA as a constrained maximum conditional mutual infor-
mation projection problem is presented in Section 5.3. Finally, a generalization of LDA, by
removing the constraints, to the maximum conditional mutual information linear projection

algorithm and its application to phoneme recognition are introduced in Section 5.4.
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5.1 MMI Acoustic-Features Representation of
Phonological Features

This section addresses the problem of finding a subset of the acoustic feature space that best
represents a set of phonological factors. A maximum mutual information approach is pre-
sented for selecting acoustic features to be combined to represent the distinctions coded by a
set of correlated phonological factors. Each set of phonological factors is chosen on the basis
of acoustic phonetic similarity, so the sets can be considered approximately independent.
This means that the output of recognizers that recognize these sets independently using the
acoustic representation achieved by an algorithm presented in this section can be combined
together to increase efficiency and robustness of the overall speech recognition system. The
mutual information between the phonological factor sets and their achieved acoustic repre-
sentation is increased by up to 220% over the best single-type acoustic representation in the
feature space of the same length.

A framework for defining the theoretically optimal method for feature subset selection was
presented in [83]. It proves that for a feature to be unnecessary to model a certain property,
it should have a Markov blanket within the complete feature set. However, this optimal
feature selection approach is computationally intractable. So we present an algorithm that
calculates a good approximation of the acoustic feature subset that has the maximum mutual
information with some phonological factors.

In the rest of this section, we will discuss the phonological factors used and the values
that can be assigned to them, and how mutual information can be calculated for different
acoustic features and phonological sets from the training data. Then, the algorithm used
for maximum mutual information selection of the acoustic features to model each factor of

speech is described, and the different experiments and results achieved.
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5.1.1 Phonological features selection

In this method, the feature stream used within each recognizer is selected from an acoustic
feature space formed from LPC cepstrum coefficients, MFCC cepstrum coefficients based
on FFT, PLP cepstrum coefficients, energy, their deltas, and their averages. The selection
of a fixed-length acoustic feature representation for each phonological factors set is based
on maximizing the mutual information between the acoustic feature stream and the corre-
sponding phonological factor set. An algorithm that tries to approximate this maximization
within a small number of iterations will be described.

Voicing, manner of articulation, place of articulation, and duration are the main aspects
of the speech signal that are selected as factors to be modeled in our system. This selection
satisfies two main requirements: that these factors are enough to discriminate among all
phonemes of English, and these factors can be assumed to be independent. Each factor can

be assigned one of a set of values which is shown in Table 5.1 These values are chosen based

Table 5.1 Phonological factors of speech and their values.

‘ Phonological Factor ‘ Values ‘

Voicing voiced, unvoiced, silence
Manner of Articulation vowel, nasal, fricative,
stop, glide, silence
Place of Articulation 17 combinations of binary
features: (round, anterior,
distributed,lateral, low,
high, back)
Duration short, medium
long

on the set of distinctive features given by Stevens in [125] such that all distinct configurations

of different phonemes can be identified.
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5.1.2 Maximum mutual information estimation

The mutual information between two random vectors X, representing the phonological set,

and Y, representing the acoustic feature, is

P(y|z;
I(X,Y) = FE {log %} . (5.1)
An empirical estimate of the mutual information is calculated by modeling P(y|z;) for
1 = 1,2,---,J by a Gaussian mixture probability density function, where J is the num-
ber of values that the phonological set can take, x; is the ith value of the phonological set.
The Expectation-Maximization (EM) algorithm is used to calculate the parameters of these
density functions using the training data. The number of densities within each mixture
varies from 2 to 13 depending on the amount of training data assigned to the specific value
of the phonological factor that the probability density function models. An estimate of P(y)
is obtained by calculating {P(x;)}7_, from the training data. Then the mutual information
between each acoustic feature available and the phonological factor under consideration is
calculated. The expectation in Equation (5.1) is approximated by a summation over all
possible values that appear in the training data.

To maximize the mutual information between a phonological set and the subset of acoustic
features that are used to model it, we need an intractable amount of computation to test
all possible subsets of the acoustic features we have. Hence, an algorithm is developed that
guarantees we will achieve a subset with high mutual information but not necessarily the

optimal one.

5.1.3 An algorithm for MMI feature selection

This section describes an algorithm for selecting a vector of M acoustic features that provide

a relatively large amount of information about some phonological factor r. First, Equa-
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tion (5.1) is evaluated for every acoustic feature individually, to find the mutual information
between each individual feature and the phonological factor. Second, the M features with
the highest individual mutual information scores are combined to form an M-dimensional
initial feature vector V, describing the phonological factor r. Then, Gaussian mixture mod-
els of the different classes of speech based on this phonological factor are built using this
feature vector. Then, the average mutual information of the phonological factor set with
the corresponding acoustic feature vector is calculated. Also, the mutual information be-
tween each acoustic feature used and the phonological factors set is calculated based on the
marginal probability density function of this feature. The acoustic features are ordered based
on this mutual information values. The worst F' features are replaced by the same number of
features from the ordered list of features based on their individual mutual information with
the phonological factor. The new Gaussian mixture models based on the new feature vector
are calculated and the process repeats. When the average mutual information decreases, the
F worst features are replaced with the best g features that were removed in the previous
stage and % acoustic features from the ordered list based on mutual information between
phonological factor and the individual acoustic feature. The algorithm can be summarized
as follows:

For r = 1 to H, where H is the number of phonological factor sets, repeat the following

steps:

1. For i =1 to N,,
Calculate the a priori probabilities of different values of phonological factors, P(xz;),

where NN, is the number of values that the rth phonological factor can have.

2. For i =1 to N,,
For a =1 to J,
Using the EM algorithm, build a Gaussian mixture model of the conditional PDF of

the acoustic feature given a certain value of the phonological factor, P(y,|x,;), where
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J is the total number of acoustic features under test.

3. Forv=1to N,,
For a =1 to J,

Calculate the mutual information between the phonological factor and the acoustic

feature, I(X,,Y,), as
0 N,

(X, V) =Y Zlog ym”

k=1 i=1

where O is the number of frames in the training data.

4. Order the acoustic features in descending order based on mutual information calculated

in the previous step and save the ordered list L,.
5. Initialize the acoustic feature vector V, with the top M features in L,.
6. While L, is not empty, do the following steps:

(a) Fori=1to N,,

Using EM algorithm, build a Gaussian mixture model of P(V,|z,;).

(b) Fori=1to N,,
For a =1 to M,
Calculate I(X,,V;,) as

O N,

(X, Via) ZZIO |x”

k=1 i=1

(c) Sort the features in V, in descending order.

(d) Calculate the average mutual information
I(X0, Vi) = 37 D T(Xe Vi)
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(e) Remove the worst F features from the list of features in V,.

(f) Compare the value of I(X,, V,) with its value in previous iteration. If more, add
the next best F' features from L, to V.. If less, add the next best g features from

L, to V, and the best g features removed from V, in the previous iteration.

7. End.

5.1.4 Performance evaluation

The speech is sampled at 16 kHz, and preemphasized, then a Hamming window with a width
of 20 ms is applied every 10 ms. The acoustic features are calculated for 3300 utterances from
the TIMIT database. These acoustic features are 12 LPC based cepstrum coefficients, 12
MFCC coefficients, 12 PLP coefficients, energy, and their averages over periods of 150 msec,
and their differences over periods of 5 msec. These acoustic features sum up to 111 features.
The 61 phonemes defined in the TIMIT database are mapped to values of the phonological
factors, and hence the phoneme labels are mapped to phonological factors labels for each
frame of speech. The algorithm described before is used to select a 39-feature vector from
the 111 features available to represent each phonological factor. The number of acoustic
features of each category in the final representation of each phonological factor is shown in
Table 5.2.

High mutual information between an acoustic feature and the phonological factor does
not necessarily imply that it will have high mutual information with the phonological factor
when included in a certain acoustic feature vector. This is due to the correlation between the
features in the vector. However, our experiments show that more than 70% of the features
that end up in the final representation of the phonological factor were in the top 39 features
of high mutual information with the phonological factor based on initial individual features
probability density functions. That is why the initialization of the feature vector with these

features decreases the time and amount of computation required to get good results.
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Table 5.2 Number of acoustic features in each MMIA representation of the phonological
factors.

| Acoustic Type | Voicing | Duration | Manner | Place |

Energy 1 1 1

A Energy 1 1 1 1
Energy Avg. 1 0 1 0
LPCC 2 3 2 5
A LPCC 0 6 4 5
LPCC Avg. 0 9 7 2
MFCC 3 3 2 3
A MFCC 5t 0 5 6
MFCC Avg. 12 12 5 8
PLP 2 2 3 5
A PLP 6 2 6 2
PLP Avg. 5 0 2 1
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Figure 5.1 Average Mutual Information of Voicing and Duration with Their Acoustic Rep-
resentation

As shown in Figure 5.1, the maximum mutual information acoustic (MMIA) representa-
tion achieved by our algorithm came out with an increase in mutual information of about
100% in the case of voicing and 220% in the case of duration. The average mutual infor-
mation achieved its maximum in five iterations in the case of voicing and in eight iterations
in the case of duration. Although the achieved feature vector is not necessarily the optimal
over the available features, it has an average mutual information that is two to three times

better than the best feature representation with the same feature vector length.
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Also, shown in Figure 5.2, the maximum mutual information acoustic (MMIA) represen-
tation achieved by our algorithm came out with an increase in mutual information of about
9% in the case of place of articulation and 2.5% in the case of manner of articulation. The
average mutual information achieved its maximum in eight iterations in the case of place of

articulation and in ten iterations in the case of manner of articulation.

x 10"
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N

Average Mutual Information
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LPCC MFCC PLP MMIA
Acoustic Features Type

Figure 5.2 Average Mutual Information of Place and Manner of Articulation with Their
Acoustic Representation

The small improvement in average mutual information in the latter case compared to
improvements in Figure 5.1 is due to using acoustic features that are calculated to model

the vocal tract, not the source of excitation or the phoneme duration.

5.2 MMI Feature Selection for Phoneme Recognition

This part addresses the problem of finding a subset of the acoustic feature space that best
represents the phoneme set used in a speech recognition system. Our maximum mutual in-
formation approach is applied here to select the acoustic features to be combined to represent
the distinctions among the phonemes.

The overall phoneme recognition accuracy is slightly increased for the same length of

feature vector for clean speech and at 10 dB compared to FFT-based Mel-frequency cep-
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strum coefficients (MFCC) by using acoustic features selected based on a maximum mutual
information criterion.

Using 16 different feature sets, the rank of the feature sets based on mutual information
can predict phoneme recognition accuracy with a correlation coefficient of 0.71 compared
to a correlation coefficient of 0.28 when using a criterion based on the average pair-wise
estimate of the divergence to rank the feature sets.

The feature stream used in each recognizer is selected from an acoustic feature space
formed from linear prediction cepstrum coefficients (LPCC), MFCC cepstrum coefficients
based on FFT, perceptual linear prediction (PLP) cepstrum coefficients, FM coefficients,
energy, their deltas, and the average of the deltas. The FM coefficients are a nonlinear mea-
sure of local spectral compactness, based on the theory of band-limited phase demodulation.

To maximize the mutual information between a phoneme set and the subset of acoustic
features that are used to model it, we used the algorithm described in Section 5.1 and in [17],
which approximates this maximization within a small number of iterations. The algorithm is
guaranteed to achieve a subset with high mutual information but not necessarily the optimal
one.

Instead of using the feature set that achieves the maximum mutual information, we select
the N best feature sets generated by this algorithm and select from them the one with the
highest recognition accuracy.

We used this algorithm also to select the acoustic-feature representation of phonemes
using a criterion based on an estimate of the average divergence between all phoneme pairs.

The divergence L(i, j) between the probability density functions P(y|z;) and P(y|z;) is

. P(y|z;
L(i,j) = /P(Y|5Uz') log %dy (5.2)

For two uncorrelated n-dimensional Gaussian probability density functions, P(y|z;) and

P(y|xz;), with mean vectors j; = [fiftiz- - ftin] and p; = [fj1ftj2 - - - ftjn], and diagonal
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covariance matrices X; and X;, respectively, L(i,j) is

L(i,j) = > d(i,j), (5.3)

where d, (i, j) is the divergence between the marginal distributions corresponding to the rth

feature, and is given by

—1 op (= )’ 0j
d.(i,j) = — o S log -2~ 5.4
(i, 5) > tar T a tIeos (54)

where o;,, and o0, are the variances of the rth feature in ¥; and X;, respectively. Then the
average pairwise estimate of the divergence of the conditional PDFs of each phoneme ¢ with

phoneme k is [64]

me My

D(c,k) = ZZHiL(i,j)JrHilogH

2
H;’
i=1 j=1 J

(5.5)

where H; is the weight of the ith Gaussian PDF in the mixture of Gaussians that model
phoneme ¢, H; is the weight of the jth Gaussian PDF in the mixture of Gaussians that model
phoneme k, m. is the number of Gaussian PDFs in the mixture of Gaussians modeling
phoneme ¢, my is the number of Gaussian PDFs in the mixture of Gaussians modeling
phoneme k, and the average estimate of the divergence based criterion for the entire phoneme

set, D, is
D = Y > P()D(ck), (5.6)

e=1 k=1,k#c

where P(c) is the a priori probability of phoneme c.
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5.2.1 Experiments and results

The speech is sampled at 16 kHz, and preemphasized, then a Hamming window with a width
of 20 ms is applied every 10 ms. The acoustic features are calculated for 4500 utterances from
the TIMIT database. These acoustic features are 12 LPC based cepstrum coefficients, 12
MFCC coefficients, 12 PLP coefficients, 14 FM coefficients, energy, and the average of their
deltas over periods of 150 ms., and their differences over periods of 5 ms. These acoustic
features sum up to 153 features. The 61 phonemes defined in the TIMIT database are
mapped to 48 phoneme labels for each frame of speech. The algorithm described before and
in [17] is used to select a 39-feature vector from the 153 features available. The indexes of
the acoustic features of each category in the final representation of the phonemes are shown
in Table 5.3. This acoustic feature representation has an empirical mutual information with
the phoneme set that is about 30% over the best single-type acoustic features. The average

empirical mutual information achieved its maximum in 10 iterations.

Table 5.3 Indexes of acoustic features in the final MMIA representation of the phoneme set.

Acoustic Type ‘ Indexes of Coeflicients ‘ Total Number ‘

Energy 1 1
A Energy None 1
Energy Avg. None 1
LPCC 1,11 12
A LPCC 1,2,3,4,5,6 12
LPCC Avg. 1,2,3,4, 5 12
MFCC 5,6,8,9,10,11,12 12
AN MFCC 9,10,11,12 12
MFCC Avg. 4,5,6,7,8,9,10,11,12 12
PLP None 12
A PLP 5 12
PLP Avg. None 12
FM 1 14
A FM 7,8 14
FM Avg. 1 14
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Using intermediate feature sets generated while trying to maximize the mutual infor-
mation, we trained many three-state left-to-right HMM phoneme models. These models
are built based on maximum likelihood estimation (MLE) training using the EM algorithm.
HMM phoneme models based on MFCC, FM, LPCC, energy, and their deltas and average
deltas were trained for comparison. Tables 5.4, and 5.5 show the phoneme recognition ac-
curacy of the maximum mutual information acoustic (MMIA) features compared to MFCC,
LPCC, and FM for clean speech and at 10 dB with and without the language model, respec-
tively. MMIA has consistent slightly superior performance with and without using bigram
language model. Experiments based on all sets of features except FM were done to test
how well an empirical estimate of the mutual information can predict phoneme recognition
accuracy based on certain features.

As shown in Figure 5.3, the MMIA representation algorithm can predict the acoustic
representation that will give a better recognition accuracy. The correlation coefficient be-
tween the rank and the phoneme recognition accuracy is 0.71. Also low values of phoneme
recognition accuracy based on an acoustic feature set result in low values of the mutual

information between this feature set and phonemes.

Table 5.4 Phoneme recognition accuracy (%) on TIMIT for clean speech and at 10 dB with
bigram model.

| Acoustic Features | Clean Speech | At 10 dB |

MMIA 62.91 49.24
MFCC 62.82 47.53
FM 61.64 46.19
LPCC 58.74 45.95

The rank of the acoustic feature set that achieves best results is second based on mutual
information. However, testing the two feature sets ranked first and second based on mutual
information in a noisy environment (at 10 dB with additive white Gaussian noise), their

phoneme recognition accuracies are 49.24% and 48.78%, respectively, compared to 47.53%
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Table 5.5 Phoneme recognition accuracy (%) on TIMIT for clean speech and at 10 dB
without language model.

‘ Acoustic Features ‘ Clean Speech ‘ At 10 dB ‘

MMIA 58.59 42.65
MFCC 58.15 41.93
FM 57.98 42.37
LPCC 595.85 40.18

for MFCC. These results suggest that the correlation coefficient of the rank and phoneme

recognition accuracy improves in noisy environments.
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Figure 5.3 Phoneme Recognition Accuracy of Feature Sets Selected Based on Mutual Infor-
mation

The same algorithm is used to select an acoustic feature representation maximizing the
criterion based on average Kullback-Liebler divergence D between all phoneme pairs in the
phoneme set.

As shown in Figure 5.4, the divergence-based criterion for feature selection is not as good
as mutual information in predicting the acoustic representation that will give a better recog-

nition accuracy. The correlation coefficient between the rank, in this case, and the phoneme
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recognition accuracy is only 0.28. The rank of the acoustic-feature representation that gives
the best phoneme recognition accuracy is 6 based on maximum average Kullback-Liebler di-
vergence criteria. Low values of phoneme recognition accuracy based on an acoustic-feature
set, do not necessarily result in low values of the average Kullback-Liebler divergence among

phoneme models based on this feature set.
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Figure 5.4 Phoneme Recognition Accuracy for Feature Sets Selected Based on Average
Divergence

5.2.2 Discussion of the results

The maximum mutual information feature selection approach introduced in this section
increases the average mutual information between phonemes and their acoustic-features rep-
resentation by 30% more than the best single category (LPCC, MFCC, FM, or PLP) repre-
sentation of the same length. These results were achieved in 10 iterations of the algorithm,
so the time and computational requirement are negligible compared to trying to achieve the

optimal maximum mutual information feature vector even over a moderate set of acoustic
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features. This provides a promising approach for speech recognition systems based on a com-
bination of different acoustic features. This approach can be easily combined with adaptive
techniques to get better recognition accuracy in noisy environments. Due to approximations
in the assumed probabilistic model of phonemes, an increase in the empirical estimate of the
mutual information between phonemes and their acoustic feature representation estimated
using these models does not guarantee an increase in the recognition accuracy. However,
the results we achieved prove that it is a good approximation of the phoneme recognition
accuracy that could be achieved using certain acoustic features. This allows testing differ-
ent acoustic-feature combinations using this approach before even designing the recognizer,
and then selecting few possible combinations based on our approach. A small number of
recognition experiments is enough to select the best acoustic representation that should be
used in modeling phonemes in the recognizer. An important advantage of this approach is
that it can be easily generalized to use the same probabilistic model used in any recognition

system. It can be applied also to any speech unit, not only to phonemes.

5.3 Discriminative Generalizations of LDA

One of the main objectives of speech signal analysis in ASR systems is to produce a pa-
rameterization of the speech signal that reduces the amount of data that is presented to the
speech recognizer, and captures salient characteristics suited for discriminating among dif-
ferent speech units. Most ASR systems use cepstral features augmented with dynamic infor-
mation from the adjacent speech frames. The algorithms for cepstral features estimation use
concepts based on human speech perception like Mel-frequency scaling and critical band fil-
ters to simulate the front-end of the human auditory system. Even with additional techniques
for speaker normalization and combating environmental noise, incorporating properties of
human speech production and auditory perception is not necessarily the optimal approach to

feature extraction for speech recognition, as they are not optimized to discriminate among
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speech units. This motivated the application of data-driven dimensionality techniques to
feature extraction for speech recognition. Most dimensionality reduction techniques applied

to speech recognition are variants or extensions of linear discriminant analysis (LDA) [16].

5.3.1 Limitations of LDA and HDA

The results reported on the application of LDA to speech recognition show consistent gain for
small vocabulary tasks and mixed results for large vocabulary applications [68]. This can be
attributed mainly to making assumptions about the problem that are unrealistic like equal
class-conditional covariance matrices, and using an optimality criterion that is not necessarily
consistent with the objective of minimizing the recognition error. It was shown that linear
discriminant analysis is related to the maximum likelihood estimation of parameters for a
Gaussian model, with a priori assumptions on the structure of the model [79]. This result
is further generalized by assuming that class distributions are a mixture of Gaussians [80].
In [68], LDA is generalized to the case of classes of different covariance matrices and this
generalization is referred to as heteroscedastic discriminant analysis (HDA). An alternative
interpretation of HDA as a constrained maximum likelihood projection for a Gaussian model
is introduced in [56].

The objective function in all these methods is not directly related to minimizing the
recognition error, and therefore does not necessarily minimize the discrimination loss due
to dimensionality reduction. LDA transformation, for example, tends to preserve distances
of already well-separated classes [129]. Maximizing the mutual information between the
features and the class is more intuitively related to minimizing the recognition error, and
therefore we argue that it is a better objective for discriminant analysis than maximizing
the likelihood under some model assumptions or constraints.

In this section, we show that calculating the LDA transformation matrix is a maximum

conditional mutual information estimation (MCMIE) problem with constraints on both the
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class-conditional and the unconditional PDFs. By relaxing these constraints, we present in
Section 5.4 a generalization of LDA to MCMI projection (MCMIP), and describe an algo-
rithm that calculates the MCMIP transform given the recognizer model. This generalization
has three advantages: it maximizes the a posteriori probability of the model corresponding
to the training data given the data which is closely related to minimizing the training data
recognition error, it is calculated in the lower-dimensional space, and it takes into consider-

ation the assumptions of the recognizer model.

5.3.2 Maximum mutual information interpretation of LDA

There are several possible class separability measures. One of the most general measures of
the ability of the features to discriminate among classes is its mutual information with the
classes. Mutual information is an invariant measure under any one-to-one transformation.

Therefore, for a full-rank linear transform of the n x 1 feature vector x,

= X, (5.7)

where y is a p x 1 vector, z is a (n —p) X 1 vector, 6 is a p X n matrix, and ¢ is a (n —p) X n

matrix,

I(Y,C) < I(X,0), (5.8)

with equality if and only if I(Z,C) = 0. This happens if and only if the feature vector Z
is statistically independent of the class identity C' [90]. Therefore, we should expect that
getting rid of these features will have negligible effect on the recognizer performance or even

improve it, if it has a negligible mutual information with the class identities. The mutual
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information between the feature vector Y and the set of classes C is

P (Y|C)}
I(Y,C) = FE {logi , 5.9
( ) P(Y,C) P(y) ( )
where { P(y|c;)}/_, and P(y) are the class-conditional and the unconditional PDFs, respec-
tively. Since we do not have the true PDFs, we calculate an estimate of the mutual infor-

mation, which is the conditional mutual information given a maximum likelihood estimate

of the parameters A of both {P(y|c;)}7_, and P(y)

N . .

- P(y'l', A)
I(Y,C|A) = log ———>—=, (5.10)

; P(y'[A)

where N is the number of training frames, and ¢’ is the class corresponding to the ith frame.
Our goal here is to show that LDA is equivalent to the problem of finding the linear
transformation matrix # that maximizes the conditional mutual information between the
lower-dimensional feature vector Y and the class identity C' with a priori assumptions on

the structure of the model. Let each class-conditional PDF in the lower-dimensional space

be modeled by a Gaussian PDF with all of them sharing the same covariance matrix

1 1 Txo—1(o
P(Y|Cj) = WGXP <_§(y_ﬂj) Wy (y My)>,

forj=1,---J, (5.11)

where Wy, is the maximum-likelihood estimate (MLE) of the class-conditional covariance
matrix, and p; is the MLE of the mean. Let also the unconditional PDF in the lower-

dimensional space be modeled by a Gaussian PDF

1 1 Ts—1
Ply) = mexp <—§(y—u) X, (y—u)>, (5.12)
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where X, is the maximum-likelihood estimate of the covariance matrix, p is the MLE of the
global mean.
Then maximizing the conditional mutual information given the maximum-likelihood es-

timate of these models with respect to 6 is equivalent to maximizing

V= log|%y| — log |[Wy|. (5.13)

Using the relations
, = 07(W+B), (5.14)
W, = "W, (5.15)

and that the logarithm is a monotonic function, the objective function to be maximized

becomes

B ‘HT(W + B)H‘

© ITW|

(5.16)

The p x n transformation 6* that maximizes the objective function in Equation ( 5.16)
is the matrix consisting of the p eigenvectors of the Fisher covariance matrix W !B corre-
sponding to the largest p eigenvalues, and therefore is the solution of the LDA maximization
also as described in Chapter 2.

It should be noted that the assumption that P(y) is Gaussian is inconsistent with the
assumption that { P(y|c;)}7_, are Gaussian, as in general if { P(y|c;)}/_, are Gaussian PDFs,
then P(y) is a Gaussian mixture PDF. This explicit modeling of P(y) that is inconsistent
with the models for {P(y]|c;)}7_, is a serious limitation of LDA. It is the main reason that
the LDA solution in many cases does not correspond to minimizing the recognition error.

Heteroscedastic discriminant analysis (HDA), as described in Chapter 2, is an extension

128



to LDA that removes the equal covariance constraint [68]. HDA was first formulated as a
maximum likelihood estimation problem for normal populations with common covariance
matrix in the rejected subspace. An alternative interpretation of HDA as a constrained
maximum likelihood projection for a full-covariance Gaussian model is introduced in [56].
HDA can be related to the maximization of the conditional mutual information in the lower
dimensional space by removing the equal class-conditional covariance from the previous
derivation for LDA. The assumption that P(y) is Gaussian is still inconsistent with the
assumption that { P(y|c;)}7_, are Gaussian. Using the convexity of the relative entropy [90],

it can be shown that this assumption underestimates the conditional mutual information as

J

opposed to calculating P(y) from the class-conditional PDFs {P(y|c;)}i_,, i-e.,

where Ip(Y,C|A) is the conditional mutual information estimated with an explicit Gaus-
sian model of P(y), and I(Y,C|A) is the conditional mutual information estimated by

calculating P(y) from the class-conditional PDFs {P(y]|c;)}/_,.

5.4 Maximum Conditional Mutual Information
Projection

In the following, we will relax the constraints of discriminant analysis to develop the max-
imum conditional mutual information projection (MCMIP) approach. This generalization
has three advantages: it maximizes the a posteriori probability of the model corresponding
to the training data given the data which is closely related to minimizing the training data
recognition error, it is calculated in the lower-dimensional space, and it takes into consider-

ation the assumptions of the recognizer model.
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5.4.1 MCMIP formulation

Given a set of class-conditional probabilistic models used by the classifier or the recognizer,
the goal of MCMIP is to find a p-dimensional subspace of an n-dimensional feature space
that retains the discrimination information contained in the original high-dimensional space
by maximizing an estimate of the conditional mutual information between the features and
the class identity. In other words, MCMIP searches for the p x n linear transformation or
projection #* of the features that maximize the conditional mutual information I(Y,C|A),

ie.,
p* = arg rnguxf(Y, C|A), (5.18)

where y = #x. From the previous discussion of discriminant analysis, the feature vector
Y achieved by MCMIP has a higher conditional mutual information with the class identi-
ties given the classifier’s set of class-conditional probabilistic models than the one obtained
by discriminant analysis approaches. From Equation (5.10), it can be easily shown that
maximizing (Y, C|A) is equivalent to maximizing the a posteriori probability of the model
corresponding to the training data given the data which is closely related to minimizing the

training data recognition error.

5.4.2 Implementation of MCMIP for speech recognition

Applying the MCMIP approach for dimensionality reduction to an HMM-based speech rec-
ognizer requires the estimation of the conditional mutual information given the HMM param-
eters. The parameters of the HMM recognizer can be calculated using maximum likelihood
estimation or discriminant approaches like maximum mutual information. We choose to use
the expectation maximization (EM) algorithm to get maximum likelihood estimates of the

HMM parameters [93]. Using these estimates of the parameters, the empirical estimate of
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the mutual information to be maximized is

I(Y,c|pn) = ) (logPA(yi|ci) — log (Z PA(yi|cj)PA(cj))> : (5.19)

i—1 j=1

where ¢’ is the maximum likelihood state assignment for the ith frame from the training

data, N is the number of frames in the training data, and

K

) 1 1
Pa(y'lcj) = Hjj———Fexp (——(y — pin) T2 (v — Mjk)) ; (5.20)
2 f

Zij - ]_

forall j = 1,2,---,J, where Hj; is the weight of the kth Gaussian PDF in the Gaussian
mixture of state j, K is the number of Gaussian PDF's in the Gaussian mixture, 1 is the
mean of the £th Gaussian PDF in the mixture, and 3 is the covariance matrix of the kth
Gaussian PDF in the mixture.

To use a gradient-based algorithm to maximize our empirical estimate of the condi-
tional mutual information 7(Y, C|A) with respect to the linear transform #, we calculate the

derivative of the objective function with respect to 6

i| 0 ck
do e~ Pp(y’|c")
N J K 1
P yZ cir ) Pa(c. _ AN
—ZZZ A( | ]k)iA( ]k)zjkl(ﬂjk_y)XT' (521)
i=1 j=1 k=1 PA(y")

The steps of the iterative algorithm to update the transformation matrix # and the HMM

parameters are

1. Initialize the transformation matrix 6.
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2. Calculate the feature vectors y using the relation y = #x, where x is the input acoustic

feature vector.

3. Using the EM algorithm, estimate the HMM parameters and segment the training

data.

4. Using the current HMM parameters and training data segmentation, estimate # that
maximizes the conditional mutual information I(Y,C|A) using the conjugate-gradient

algorithm.

5. Iterate (starting from 2) until convergence.

5.4.3 Experiments and results

The MCMIP algorithm is used to study the optimal feature subspace for diagonal-covariance
Gaussian mixture HMM modeling of the TIMIT database.

The baseline 26-feature vector consists of 12 MFCC coefficients, energy, and their deltas.
The input to the MCMIP algorithm consists of five of these feature vectors centered at the
target frame. This 130-feature vector is then transformed using the MCMIP algorithm to a
26-feature vector. In each iteration, the new feature vector is calculated using the current
MCMIP transformation parameters, then the maximum likelihood estimates of the HMM
model parameters are calculated. Then, the MCMIP transformation matrix is calculated
using the conjugate-gradient algorithm. After the iterative algorithm converges to a set of
locally optimal HMM and MCMIP parameters, the training data are transformed by the
MCMIP matrix yielding the final MCMIP feature vector.

In our experiments, the 61 phonemes defined in the TIMIT database are mapped to
48 phoneme labels for each frame of speech as described in [112]. These 48 phonemes are
collapsed to 39 phonemes for testing purposes as in [112]. A three-state left-to-right model

for each triphone is trained. The number of mixtures per state was varied between 3 and
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13, depending on the number of training observations assigned to the state. The parameters
of the recognizer and the MCMIP transform are trained using the training portion of the
TIMIT database. The parameters of the triphone models are then tied together using the
same approach as in [115].

To compare the performance of the proposed algorithm with other approaches, we gen-
erated acoustic features using LDA and HDA. We used the same 130-feature vector input to
MCMIP with both LDA and HDA and kept the dimensions of the output of LDA and HDA
the same as the MCMIP output.

Testing this recognizer, using the test data in the TIMIT database, we get the phoneme
recognition results in Table 5.6. These results are obtained by using a bigram phoneme
language model and by keeping the insertion error around 10% as in [112]. The table
compares MCMIP recognition results to the ones obtained by the baseline MFCC, LDA,
and HDA.

Table 5.6 Phoneme recognition accuracy (%) on TIMIT for MFCC features and features
generated by LDA, HDA or MCMIP.

Acoustic Features | Recognition Accuracy
MFCC 73.7%
LDA 73.8%
HDA 74.1%
MCMIP 74.7%

5.4.4 Discussion

In this work, we described a framework for discriminant analysis for speech recognition.
This framework is an extension of current approaches by relaxing the constraints imposed
on the model in LDA and HDA approaches. Our approach maximizes the conditional mu-
tual information between the feature vector and the HMM states, which is closely related

to recognition error, as opposed to maximizing the likelihood in LDA and HDA approaches,
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which is not directly related to recognition error. We introduced also an iterative algorithm
to calculate the MCMIP matrix for an HMM-based recognizer. Phoneme recognition exper-
iments using features generated by this algorithm show significant improvement compared

to previous dimensionality reduction transforms like LDA and HDA.
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CHAPTER 6

SUMMARY AND DIRECTIONS

In this chapter, we will summarize the most important points, in the author’s view, that are
presented in the dissertation, and give directions for future related work. In Section 6.1, we
will discuss these issues for the model enforcement approach, and we will discuss them for

the discriminative dimensionality reduction approach in Section 6.2.

6.1 The Model Enforcement Approach

The model enforcement problem formulation provides a unified feature transformation frame-
work that can be applied to any statistical classification or recognition problem. It provides a
unified framework for many previous linear techniques in several research areas. Examples of
these areas include statistics, pattern recognition, signal processing, and data mining. It ex-
tends these techniques to not-necessarily-linear approaches. We described in Chapter 3 some
applications based on a class of nonlinear volume-preserving transforms—namely symplectic
maps. However, the choice of the class of maps that we restrict our solutions to is in general
problem-dependent. Hence, the problem of determining this class for a given application is
an interesting area of future research. It should be noted that the main advantages of most
existing linear techniques for feature transformation over nonlinear techniques are simplicity
and computational efficiency. Therefore, simplicity and computational efficiency should be
among the main factors that affect the choice of the class of maps. Other possible factors can

be obtained from knowledge about the features and/or the model used in the classification
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or recognition system. For the ASR problem, our choice of symplectic maps was motivated
by the computational efficiency during both training and decoding, and the knowledge that
the problem to be solved is caused by sources that are represented nonlinearly in the original
feature space.

The approach presented here for strong-sense class-dependent features provides solutions
to many problems related to using class-dependent features in statistical classification and
recognition systems. It gives class-dependent features that have comparable likelihoods and
avoids the need of noise-only models that are usually used with weak-sense class-dependent
features. The choice of the class of maps that are used in generating strong-sense class-
dependent features remains as an important topic for future research for ASR and other
applications. Our choice of using symplectic maps was motivated by the computational
efficiency and the simplicity of the decoding process guaranteed by the volume-preserving
property of the symplectic maps. As the computational capabilities of computers improve,
the importance of computational efficiency decreases and many other classes of maps can be

tested.

6.2 Discriminative Feature Selection and
Dimensionality Reduction Approaches

As explained in Chapter 5, maximizing the conditional mutual information between the
classes and the features satisfies many requirements of an optimal objective criterion for
dimensionality reduction and a possible alternative to the optimal objective criterion for
feature selection. By giving an interpretation of LDA as a special case of the maximum
conditional mutual information projection approach, we can consider many possible general-
izations of LDA by relaxing constraints on the probabilistic model or the projecting function.
Contrary to previous generalizations of LDA, these generalizations maximize a discrimina-
tive objective criterion in the lower-dimensional feature space. We introduced in Chapter 5

a linear generalization. Many other possible generalizations can be considered in future re-
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search. A related problem that, in the author’s view, should be considered in future research
is the consistency of the solutions based on an empirical estimate of the conditional mutual

information.
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