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Abstract

Pronunciation variation in conversational speech has
caused significant amount of word errors in large vo-
cabulary automatic speech recognition. Rule-based ap-
proaches and decision-tree based approaches have been
previously proposed to model pronunciation variation. In
this paper, we report our work on modeling pronunciation
variation using artificial neural networks (ANN). The re-
sults we achieved are significantly better than previously
published ones on two different corpora, indicating that
ANN may be better suited for modeling pronunciation
variation than other statistical models that have been pre-
viously investigated. Our experiments indicate that bi-
nary distinctive features can be used to effectively repre-
sent the phonological context. We also find that including
pitch accent feature in input improves the prediction of
pronunciation variation on a ToBI-labeled subset of the
Switchboard corpus.

1. Introduction

Contemporary large vocabulary automatic speech recog-
nizers (ASRs) require pronunciation dictionaries to in-
tegrate the recognition effort at acoustic and language
levels. Most pronunciation dictionaries used in current
ASRs contain only a few alternative pronunciations for
most words. This has brought at least two problems. In
recognition, pronunciation variation creates confusion to
the decoding algorithm. For example, the word “them”
can be pronounce as /dh ax n/ in some contexts, bear-
ing no acoustic difference from the word “than”. In it-
erative acoustic training, where phonetic transcriptions
are generated from word transcriptions and pronunciation
dictionaries via forced alignment and used to retrain the
acoustic models, the amount of modeled pronunciation
variation in the dictionaries will significantly affect the
accuracy of the resulting acoustic models (and the result-
ing phonetic transcriptions). Due to the above reasons,
seeking models that accurately account for pronunciation
variation has been an active research topic during the past
several decades.

Oshika et al.[1] formulated common types of pronun-

ciation variation in English as a series of rules includ-
ing vowel reduction/deletion, alveolar flapping, homor-
ganic stop deletion, geminate reduction and etc. In the
literature, various knowledge-based approaches and data-
driven approaches have been proposed [2]. Among them,
the decision-tree based approaches have received a con-
siderable amount of attention and have created successful
results on standard English corpora [3, 4, 5]. Although
pronunciation variation occurs both word-internally and
across word boundaries (with possibly different charac-
teristics), phone-based models that predict the realized
phones (the surface form) from a window of canonical
phonemes (the citation form) are used for both types of
variation. Syllable-based and word-based models were
investigated by Fosler-Lussier[5] and were shown to cap-
ture many of the coordinated phone pronunciation varia-
tions not handled by independent phone models.

It has been shown [4, 5] that the mapping from canon-
ical phones to surface phones is dynamic, in the sense
that realization of the current phone depends on realiza-
tion of previous phones. It has also been demonstrated
that auxiliary factors such as stress, syllabification, syn-
tax and prosody may have an effect on pronunciation.
We are particularly interested in the effect of prosody
on pronunciation. Words bearing pitch accent are usu-
ally “hyper-articulated,” and have been reported to suf-
fer less co-articulation than other words. Discrete pitch
accent tags have not, we believe, previously been used
in pronunciation models, but auxiliary features related
to pitch accent have been shown to improve pronuncia-
tion models. Fosler [5] achieved better performance by
including speaking rate in input feature vectors. Osten-
dorf et al. [6] reported a small performance improvement
when word level syntactic features (part-of-speech tags)
and acoustic-prosodic features (F0, duration and energy)
are included in input feature vectors.

Neural networks have been proposed to model pro-
nunciation variation in Japanese [7]. Our approach may
be considered an extension of the work in [7], but with
three extensions. First, we include a number of input
features that have proven useful in tree-based pronunci-
ation models, including syntactic and dynamic features;



because of the similarity in our methods, we are able to
compare our results directly to those achieved by a widely
cited and carefully designed tree-based model [4]. Sec-
ond, we experiment with the relative merits of distinctive
feature encoding of phones, in place of the phoneme in-
dicator functions used by [7]. Third, we consider the use
of explicit prosodic tags (specifically, a binary tag repre-
senting presence vs. absence of pitch accent) as an input
feature for dynamic pronunciation modeling.

2. Methods

2.1. The models

The problem under investigation in this study is to pre-
dict the realized phonetic sequencêQ = [q̂0, . . . , q̂N ]
(obtained from acoustic signal by phoneticians or via
automatic methods) given the canonical phoneme se-
quence Q = [q0, . . . , qM ] (created by concatenat-
ing the pronunciation of individual words contained
in the lexicon), where the phonetic variableŝqi and
qi take values on the same phoneme setΩ. In or-
der to incorporate the prediction scores into the prob-
abilistic framework of ASRs, probability density func-
tions (PDFs) are usually used as predictors, and an
auxiliary vector sequenceA = [~a0, . . . ,~aM ] con-
taining high level information that has known effects
on the prediction are included as conditioning factors:
p̂(q̂i|q0, . . . , qM ,~a0, . . . ,~aM , q̂0, . . . , q̂i−1). Obviously,
not all these conditioning factors are relevant. There-
fore, a functionφ(q0, . . . , qM ,~a0, . . . ,~aM , q̂0, . . . , q̂i−1)
can be used to select the relevant factors. Usually the
factors that affect the prediction of̂qi are assumed to be
localized within a small window ofL phonemes centered
aroundqi, and the previous realized phoneq̂i−1 is also
selected, making this system first-order Markov [3]:

p̂(q̂i|φ(q0, . . . , qM ,~a0, . . . ,~aM , q̂0, . . . , q̂i−1))
≈ p̂(q̂i|qi−δ, . . . , qi+δ,~ai−δ, . . . ,~ai+δ, q̂i−1), (1)

whereδ = (L − 1)/2 and L normally equals 3 or 5.
The auxiliary vector~ai is composed of several variables
describing high level linguistic information.

2.2. The transcriptions and the dictionary

In order to train the pronunciation model, realized phone
transcriptions (manually transcribed) are automatically
aligned with a baseline phoneme transcription, con-
structed by concatenating canonical pronunciations from
the Pronlex dictionary. Automatic alignment minimizes
a metric similar to Levenshtein distance, but with a sub-
stition cost sensitive to the number of distinctive features
that differ between baseline phoneme and realized phone.
An example of the alignment is given below:

/ae n d w ah t y uw k ae n t t ey k/
/eh n # w ax ch # uw k ae n # t ey k/

for the utterance “and what you can’t take” from Switch-
board. The first row in this example is the phoneme tran-
scription and the second row the hand-labeled phone tran-
scription. Notice the alveolar stop deletions (/ae n d/→
/eh n/), vowel reduction (/ah/→ /ax/) and palatalization
(/t y/ → /ch/). Symbol “#” is used to represent deletions
and insertions.

To be consistent with previous published works [4],
Pronlex, a dictionary distributed by LDC, is used to gen-
erate the phoneme transcription. Pronlex contains a set of
about 48 phonemes similar to those used in TIMIT.

The complete set of aligned transcriptions is available
at http://www.ifp.uiuc.edu/speech.

2.3. Performance Measure

In this paper, we measure the quality of our model using
cross entropy:

H(T ) = − 1
R

R∑
i=1

log p̂(q̂i|qi−δ, . . . , qi+δ,~ai−δ, . . . ,~ai+δ, q̂i−1),

(2)
whereT is a test set of aligned transcriptions that contain
R phones. The more accurate the PDFs are, the larger the
probability scores in average, and the smallerH(T ).

In computing (2), Riley et al. [4] exclude the worst
10% log probability scores in the summation. We apply
the same strategy in this paper so that our results will be
comparable with theirs on the same databases.

2.4. The ANN architecture and the input features

The ANN used in this study is a multi-layer perceptron
(MLP) trained with error back propagation. The num-
ber of output nodes is equal to the size of the phoneme
set plus an additional node “null” used for phone dele-
tion. We currently do not handle insertions in this system
as the number of insertions is small in hand-transcribed
phonetic corpora.

We compare two possible phoneme encodings: an
encoding using binary indicator functions (as in [7]),
and an encoding using distinctive features. Distinctive
feature representations may be either binary or multi-
valued; for example, [4] encodes each phoneme using
four distinctive features (consonant-manner, consonant-
place, vowel-manner, vowel-place), each of which takes
8 to 10 different categorical values. Few ASR models
use binary distinctive features, but theoretical phonologi-
cal models often do; for example, Keyser and Stevens [8]
represent coarticulation and reduction as the spreading
or deletion of conditionally independent binary distinc-
tive features. In our study, each phoneme is described
using a vector of 15 binary distinctive features includ-
ing 7 features for vowels: “high”, “low”, “back”, “diph-
thong”, “tense”, “reduced” and “rounding”, 7 features
for the manner, place and voicing of consonants: “sono-



rant”, “continuant”, “syllabic”, “blade”, “anterior”, “dis-
tributed” and “spread glottis”, and a feature “vocalic” that
distinguishes vowel vectors from consonant vectors.

For each phone, five auxiliary features are encoded:
~ai = [b, l, s, f, p], whereb encodes phone position rela-
tive to the closest word boundary,l phone position in the
syllable,s lexical stress,f function word versus content
word, andp pitch-accented vs. unaccented. These fea-
tures are all binary exceptb, which is integer-valued. We
divideb by a constant such that it ranges between 0 and 1.
Function words are chosen based on their part-of-speech
and word frequency. Featurep is only used in our exper-
iments on the prosodically transcribed corpus.

3. The Corpora

Our experiments are conducted on three English corpora:
TIMIT, ICSI (the ICSI spontaneous-speech phonetically
transcribed corpus [9]), and ICSIProsody (a subset of the
ICSI corpus that has been prosodically transcribed at the
University of Illinois [10]). In TIMIT, all the si and sx
sentences from the train and test directories are used for
training and testing. Altogether, there are around 134,000
phones. The 61 phonemes in the TIMIT phoneme set are
collapsed into a 42-phoneme set in order to be consistent
with the Pronlex phoneme set (a few phonemes in Pron-
lex are also merged). The ICSI corpus contains around
96000 phones that were originally hand-transcribed us-
ing a very detailed phonetic label set; these transcriptions
are also collapsed into the 42-phoneme set. ICSIProsody
has the same phone transcriptions as the rest of the ICSI
corpus, but also carries ToBI [11] prosodic transcrip-
tions including the presence vs. absence of pitch ac-
cent. ICSIProsody is the result of a currently ongoing
transcription effort. Current ICSIProsody transcriptions
contain only about 5,000 phones, therefore we use all
available data in this corpus for training, and evaluate the
effects of prosody by comparing the training performance
with vs. without prosodic features.

4. Results

The first experiment compares the performance of our
ANN based models with that of the decision-tree based
models reported in [4]. We believe that our results are
comparable with theirs because we used the same cor-
pora, same dictionary and same performance measure as
theirs, but it is possible that minor differences in imple-
mentation details exist. Table 1 compares the results re-
ported in [4] and the results of our best performing net-
works.

Table 1 indicates that ANN based models reduce the
cross-entropy by 71.2% on TIMIT and 51.5% on ICSI,
which are significantly higher than reductions obtained
from the decision tree models (51% on TIMIT, 30% on
ICSI). The baseline cross-entropy before training (the

Decision Trees ANNs
Entropy % Entropy %

TIMIT 0.34→0.17 51.0 0.358→0.103 71.2
ICSI 0.72→0.50 30.0 0.835→0.405 51.5

Table 1: The absolute and the percent (%) reduction of
cross entropy (bits) for decision-tree based models and
ANN based models on TIMIT and ICSI. Decision tree
results are as reported in [4].

Coding L H Cross Entropy %
IF3 Indicator 3 28 0.358→0.106 70.4
IF5 Indicator 5 20 0.358→0.105 70.7
DF3 Dist. Feat. 3 57 0.358→0.103 71.2
DF5 Dist. Feat. 5 44 0.358→0.119 66.8

Table 2: The absolute and the percent (%) reduction
of cross entropy (bits) on TIMIT for model IF3, IF5,
DF3, DF5 with difference in the coding scheme (indica-
tor function (IF) or distinctive feature (DF)), window size
L, and number of hidden nodes (H).

numbers on the left of→) is computed by replacing the
log probability in equation (2) with the unigram probabil-
ities p(q̂i|qi) estimated from the training data. The best
performing MLP in our experiment contains a single hid-
den layer with around 40 nodes.

Our second experiment on TIMIT compares the per-
formance of different network configurations. We are
interested in finding out whether a larger window size
(L = 5) gives better performance than a smaller win-
dow size (L = 3). We are also interested to know if a
distinctive feature (DF) based encoding scheme produces
better performance than an indicator function (IF) based
scheme. For fair comparison, we adjust the number of
hidden nodes such that all the models have approximately
equal number of parameters. The previous realized phone
q̂i−1 is included in the input vector in all models. The re-
sults of this experiment are listed in table 2.

As shown in table 2, increasing the window sizeL
does not improve the performance (and actually hurts the
DF based models). DF based systems yields slightly bet-
ter performance than IF based systems whenL = 3. This
result suggests that relevant information is mostly con-
tained in a 3 phoneme window. Increasing window size
apparently fragments the training data and reduces the
ability of models to generalize from training to test data.
DF encoded phonological context is at least as effective
as IF encoded phonological context given a small window
size.

The third experiment tests the hypothesis that pitch
accent affects the phone realization probability. The bi-
nary pitch accent featurep (accented vs. unaccented
syllable) is appended to the input vector, with values
extracted from the ToBI labels. The performance on



Figure 1:The averaged entropy on training set as a func-
tion of training iterations with and without pitch accent
featurep.

ICSI Prosody is compared in terms of the entropy, the
mean squared error and the prediction accuracy on the
training set after networks were trained from the same
initialization for 250 iterations. Consistent improvement
is found with featurep included under most of the con-
ditions. We plot the averaged entropy (averaged over
all conditions) with and withoutp on fig. 1. Obviously,
smaller averaged entropy is achieved whenp is included
in the input vector.

5. Conclusions

In this paper, we report our work on modeling pronun-
ciation variation using artificial neural networks (ANN).
Results indicate that ANNs may be well suited for model-
ing pronunciation variation. A binary distinctive feature
encoding of input phones performs slightly but signifi-
cantly better than indicator features over a three-phone in-
put window, but suffers from overtraining when used with
a five-phone window. We also find that including pitch
accent feature in input improves the prediction of pronun-
ciation variation on a subset of ToBI labeled switchboard
corpus.
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