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ABSTRACT

This paper presents a mixture state particle filter method for
formant tracking during both vowels and consonants. We
show that mixture state particle filter model is able to in-
corporate prior information about phoneme class into the
system, which helps the system to find global optimal solu-
tions. Formant frequencies are defined as eigenfrequencies
of the vocal tract in this paper, and by exploring this fact us-
ing spectral estimation techniques, the observation PDF of
the particle filter can be simplified. We show that by using
this likelihood function in the importance weights, the sys-
tem is able to track the formants using a small number of
particles.

1. INTRODUCTION

Estimating formant frequencies during consonant closure is
difficult for two reasons. First, consonant spectra are char-
acterized by both poles and zeros, thus the autoregressive
(AR) spectral model typically used for formant estimation
during vowels is theoretically inapplicable during conso-
nant production. Second, when a spectral zero is close to the
frequency of a pole, pole-zero cancellation occurs, and the
formant frequency becomes unobservable. The first prob-
lem can be solved using an iterative autoregressive moving-
average (ARMA) spectral estimation algorithm, provided
that the number of spectral zeros is known, and provided
that pole-zero cancellation has not occurred [6]. The sec-
ond problem has not been addressed in the formant tracking
literature. In practice, most formant frequencies are can-
celed by zeros most of the time during production of conso-
nants [10], thus ARMA spectral estimation is not sufficient
for accurate formant estimation during consonant closure.

A hidden dynamic model of speech production in order to
estimate formant frequencies during consonant closures has
been proposed in [11]. In [11], we show that a generic par-
ticle filter method can be used to track formants and their
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amplitudes. In this paper, we propose a mixture state par-
ticle filter, which incorporates prior knowledge about 10
phoneme classes in order to effectively sample the typical
space of each phoneme class; and by using a problem spe-
cific optimized likelihood function, we show that the num-
ber of particles can be greatly reduced.

The article is organized as follows. Section 2 reviews the
EWAR model, and introduces the problem specific likeli-
hood function. Section 3 demonstrates the mixture state
particle filter method. Section 4 reviews conclusions.

2. EWAR MODEL AND LIKELIHOOD FUNCTION

2.1. EWAR Model [11]

Because of the difficulty of estimating spectral zeros, as
well as the apparent inability of human listeners to perceive
spectral zeros, we proposed to model the spectra of both
vowels and consonants using an exponentially-weighted au-
toregressive (EWAR) spectrum [11]. The EWAR model is
not a physical model of speech production; rather it is a
function capable of accurately representing the amplitudes
and frequencies of poles in an ARMA spectrum without ex-
plicitly modeling zeros. Specifically, assume that the vo-
cal tract transfer function can be modeled by the following
function:

T (z) = G

M∏
m=1

1

[(1 − e−σmz−1)(1 − e−σ∗

mz−1)]ηm
(1)

where σm = π bm

fs
+ j2π fm

fs
is the complex frequency of

the mth formant, bm is the formant bandwidth measured in
Hz, fm is the formant frequency in Hz, fs is the sample
frequency in Hz and M is the number of formants to track,
and ηm is a coupling coefficient that models inaccuracies in
the all-pole spectral model. During vowel production, ηm ≈
1. During consonant production, ηm ≈ 1 for fully excited
formants, but ηm ≈ 0 for formants canceled by spectral
zeros or by nulls in the excitation.

Given equation 1,the log spectrum log T (z) is the sum
of 2M different terms of the form log(1−y), where x takes



the values of e−σmz−1 and e−σ∗

mz−1.Using the standard
Taylor expansion of log(1 − y), we obtain:

logT (z) = logG +

∞∑
n=1

cnz−n (2)

cn =
M∑

m=1

2ηm
e−πn bm

fs

n
cos(2πn

fm

fs
) (3)

Writing cn in the vector form and taking the first N ele-
ments, we obtain:

~c = 2

M∑
m=1

ηm~gm (4)

where ~gm is the cepstral component corresponding to a sin-
gle complex pole pair at frequency fm with bandwidth bm,
i.e.,

~gm = [e−π bm
fs cos(2π

fm

fs
), · · · ,

1

N
e−πN bm

fs cos(2πN
fm

fs
)]T

(5)
Equations 4 and 5 are similar to the formant decomposi-

tion of the cepstrum given in most speech signal processing
textbooks (e.g., [8, 9]) and in [3], but with one important
difference: each of the formant resonators is scaled by a
coupling coefficient ηm. Equation 4 is a closed-form pa-
rameterized mapping from the formant frequencies to the
cepstrum; the parameters, ηm, allow the model to represent
a wide range of speech spectra, from vowels to fricative con-
sonants to silence.

Rabiner [9] notes that the ringing of the cepstrum decays
quickly, and that therefore, only a small number of cepstral
coefficients contain information relevant to the task of for-
mant frequency discrimination. In our experiment, N=16
and fs = 16KHz

2.2. Likelihood Function

Assuming that the vocal tract changes slowly with time, and
that therefore the formant frequencies change little over a
time interval on the order of 10ms to 30 ms, a hidden dy-
namic model can be formulated as follows:

~ft = ~ft−1 + ~vt−1, ~vt−1 ∼ N(0, Σf ) (6)

~yt = Ct~ηt + ~et, ~et ∼ N(0, σ2
yI) (7)

where Ct = [2~g1(t), · · · , 2~gM (t)],~ft = [f1(t), · · · , fM (t)]T ,
~ηt = [η1(t), · · · , ηM (t)]T , and ~gm was defined in Equation
5.
We drop the ~bt here for two reasons: first, the likelihood
function which we will use in the importance weights is in-
sensitive to the accuracy of the bandwidth, so we set bm =
100Hz for all formant frequencies; second, EWAR model
is able to capture the amplitude of formants by η in Eq. 1.

The likelihood function of the observation is defined as
follows, (notation of t has been dropped ):

p(~y|~f, σ) =

∫
dη1 · · · dηM

1

(2πσ2)N/2
e[− 1

2σ2 ||~y−C(~f)~η||2]

(8)

In the following, we show that marginalization techniques
proposed in [1] can be used to simplify the likelihood func-
tion in Eq. 8.

By SVD, let C = ΨΛΓT , ~y can be represented as linear
combinations of orthogonal basis functions (i.e. columns in
Ψ). By changing the base, Eq. 8 can be written as follows:

p(~y|~f, σ) =

∫
· · ·

∫
dγ1 · · · dγM

1

(2πσ2)N/2
e[− 1

2σ2 ||~y−Ψ~γ||2]

(9)

where

~γ = ΛΓT ~η

By assuming uniform distribution of γm and integrating out
γm, Eq. 9 can be simplified as follows [1]:

p(~y|~f, σ) ∝ σ−N+me−
1

2σ2 (||~y||2−||~h||2) (10)

~h = ΨT ~y

And given C, σ will be estimated as follows [2]:

σ̂2 =
~yT M~y

N − 1
(11)

where M = C(CT C)−1CT .

The likelihood function in Eq. 10 is very selective of the
target formant and very insensitive to the choice of band-
width and time decay factor 1/n. An example of normal-
ized likelihood of a simulated signal with a singal complex
pole pair at 2000 Hz and bandwidth 250 Hz is shown in Fig.
1.

3. FORMANT TRACKING BY MIXTURE STATE
PARTICLE FILTER

A method for formant tracking using a generic particle filter
is presented in [11]. In this section, we show how to solve
the problem by using a mixture state particle filter.

3.1. Mixture State Particle Filter

In addition to time continuity constrains on the formants en-
forced by Eq. 6, a discrete phone-dependent state st is in-
troduced. The discrete state further constrains the dynamics
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Fig. 1. Illustration of normalized likelihood function for
cepstrum of one single frequency at 2000 Hz with 250 Hz
bandwidth. For all three cases, the maximum value of like-
lihood or periodogram is normalized to one. Star line is the
likelihood derived from base function with bandwidth 100
Hz and time decay 1/n, dotted line is the likelihood derived
from base function with bandwidth set to 0 Hz and with time
decay, solid line is the likehood derived from base function
with only cosine terms.

of the formants. The formulation of the problem is as fol-
lows:

Pr(st = k|st−1 = j) = Tjk (12)

P (~ft|st) ∼ N(~µs, Σs) (13)

~ft(st) = ~ft−1(st−1) + ~vt−1, ~vt−1 ∼ N(0, Σf ) (14)

~yt = Ct~ηt + ~et, ~et ∼ N(0, σ2
yI) (15)

The mixture state particle formant tracking algorithm is
as follows:

1. Sampling Step:

FOR t = 1 : τ

a. SIS Step
(Generating samples for each state)
FOR s = 1 : K

Σ̄s = (Σ−1
f + Σ−1

s )−1

FOR i = 1 : Ns

µ̄s(t) = Σ̄s[Σ
−1
f

~f
(i)
t−1 + Σ−1

s ~µs]

Sample f
(i,s)
t from N(µ̄s(t),Σ̄s)

l
(i,s)
t ∝ p(y|fti, s, σ)T

s
(i)
t−1k

END

END

(Choose the particles from K candidates)
FOR i = 1 : Ns

s∗ = argmax
s=1,2,··· ,K

l
(i,s)
t

f
(i)
t = f

(i,s∗)
t

END

b. SIR Step [7]

Compute qi
t =

l
(i)
t q

(i)
t−1∑Ns

j=1 l
(i)
t q

(j)
t−1

Resampling Step:
Resample Ns times from the discrete

distribution q
(i)
t ,generating vectors ~f

(j)
t|t

such that for any j,

Pr(~f
(j)
t|t = ~f

(i)
t|(t−1)) = qi

t.

END

2. State Estimation
FOR t = 1 : τ

f̂t =
1

Ns

Ns∑
j=1

f
(j)
t

η̂t = argmin ‖~yt − C(~ft)~ηt‖
2

END

3.2. Experiment

Experiments reported in this section use a four-dimensional
formant state vector ~ft. Ns = 20 particles per time are
used. K = 11 states are used. Vectors ~ft are predicted and
resampled according to the algorithm given in Section 3.1.

In experiments reported in this section, all covariance matri-
ces are assumed to be diagonal, square roots of the diagonal
elements of Σf are [120 200 200 200]Hz, and square
roots of the diagonal elements of Σs are
[120 200 250 250]Hz. The transition, state, and ob-
servation probability densities are further limited by the fol-
lowing constraints on ~ft:

1. Formant frequencies are drawn from the following
frequency ranges: f1 ∈ [400, 1200]Hz,
f2 ∈ [700, 2100]Hz, f3 ∈ [1600, 3200]Hz, f4 ∈
[2800, 4600]Hz.

2. No two formant frequencies are ever less than 200Hz
apart, i.e., fm ≥ fm−1 + 200Hz.
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Fig. 2. Dynamic formant tracking results obtained using the
mixture particle filtering algorithm. a) Formant tracking re-
sult. Vertical line is the boundary between two phonemes
and phonemes are labeled at the top.) (b) η for each For-
mant, where larger η is brighter than smaller one.

3. Ten of the eleven means ~µs in Eq. 13 are set accord-
ing to the formant frequencies for typical vowels in
[9]. And the last state is used as a general term by
setting elements of Σs to be big.

An example of formant tracking results using mixture par-
ticle filter is shown in Figure 2. Figure 2 demonstrates
that mixture particle filter is capable to track the dynamics
of formant frequency by using a small amount of particles.
The advantages of mixture model is obvious. First, it is able
to incorporate prior information of the system; second, it
offers a better description of complex system than generic
particle filter.

4. CONCLUSIONS

Speech synthesis algorithms define the formant frequencies
to be the eigenfrequencies of the vocal tract, from larynx
to lips, regardless of whether or not the observed acoustic
spectrum at any given time contains any evidence for the
frequency of a particular formant. Tracking formant fre-
quencies during silences, stops, and fricatives requires the
use of an explicit model of formant frequency dynamics.
Previous studies have attempted to impose an explicit model

of formant frequency dynamics using a discretized formant
frequency space with a simplified local observation PDF [5]
or an extended Kalman filter with an observation PDF esti-
mated via artificial neural network [4].

The current paper proposes a mixture state particle filter
method, incorporating important prior information about the
phoneme class, and capable of providing kinematically plau-
sible interpolation of formant frequencies during consonant
closure.
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