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Abstract
This paper proposes a new training framework for mixed la-
beled and unlabeled data and evaluates it on the task of binary
phonetic classification. Our training objective function com-
bines Maximum Mutual Information (MMI) for labeled data
and Maximum Likelihood (ML) for unlabeled data. Through
the modified training objective, MMI estimates are smoothed
with ML estimates obtained from unlabeled data. On the other
hand, our training criterion can also help the existing model
adapt to new speech characteristics from unlabeled speech. In
our experiments of phonetic classification, there is a consistent
reduction of error rate from MLE to MMIE with I-smoothing,
and then to MMIE with unlabeled-smoothing. Error rates can be
further reduced by transductive-MMIE. We also experimented
with the gender-mismatched case, in which the best improve-
ment shows MMIE with unlabeled data has a 9.3% absolute
lower error rate than MLE and a 2.35% absolute lower error
rate than MMIE with I-smoothing.
Index Terms: unlabeled speech, Maximum mutual informa-
tion, Gaussian mixture models

1. Introduction
There have been many successful discriminative training tech-
niques applied to the parameter estimation of Hidden Markov
Models (HMM) for automatic speech recognition (ASR). Ex-
amples of these include maximum mutual information estima-
tion (MMIE) [1], minimum classification error (MCE) train-
ing [2], minimum phone error (MPE) training [3], and more
recently large margin methods [4]. All of these discriminative
methods require the correct transcription for the speech corpora
used for training HMMs.

On the other hand, there are a large number of untranscribed
corpora from the Internet and other sources, which are relatively
easy and cheap to maintain compared to the transcribed ones.
In the machine learning world, some researchers have started
to seek “semi-supervised learning” [5] as a way of making use
of those ”cheap” unlabeled data together with the labeled set.
Based on the similar motivation, this paper investigates how
unlabeled data can be integrated into a discriminative training
objective, how much improvement it can provide, and under
what condition it can help most.

In recent years, researchers in ASR have been also in-
terested in the potential benefit from unlabeled speech to the
acoustic model training. Most published approaches [6, 7] use
an existing speech recognizer to transcribe unlabeled speech
(possibly with the help of closed captions), and then the newly
transcribed data with sufficiently high confidence measures are
added into the training set for training an improved recognizer.

Furthermore, this procedure is applied iteratively. Starting from
another angle, we seek a way to combine unlabeled and labeled
data for training simultaneously, instead of iterative tagging;
our approach is probably complementary to iterative tagging,
though we have not tested the combination. The advantage of
our approach is that we are free of worries about finding reliable
recognizer outputs or defining confidence thresholds. The basic
idea of our algorithm is to add the total likelihood of unlabeled
data as a criterion into the original MMI objective function. In
this way unlabeled data place an additional constraint in a maxi-
mum likelihood sense on the parameters estimated from labeled
data. This extends the H-criterion proposed in [8], which is an
interpolation of the MMI criterion and ML criterion, because
the ML criterion in our objective function is for unlabeled data
while that in the H-criterion is for labeled data.

Our algorithm for a combinational use of labeled and unla-
beled data can be applied under at least three different scenarios,
for each of which we evaluated the improvement gained from
unlabeled data. One is to train an improved recognizer when
the evaluation test set shares speech characteristics with the la-
beled training corpus. In this case, unlabeled data are expected
to contribute extra information especially when labeled data are
limited and insufficient for training a good model. We call it
unlabeled-smoothing for it prevents model over-training in a
similar way to I-smoothing [9]. The second scenario adapts an
existing model to a new untranscribed corpus which might have
different characteristics from the labeled data used for training
the existing model. In this case, unlabeled data help the model
adapt to the new speech characteristics, which can be regarded
as an off-line unsupervised adaptation task based on a discrim-
inative criterion. In the third scenario, evaluation test data are
used as unlabeled training data; we call this scenario transduc-
tive MMIE.

The rest of the paper is organized as follows. Section 2 first
describes the MMI objective function and I-smoothing. Sec-
tion 3 introduces our modified objective function and the result-
ing re-estimation formulas. The experiment setup and results
are then shown in section 4, followed by the discussion in sec-
tion 5.

2. Maximum Mutual Information
Estimation

Generally for a classification problem, the MMI objective func-
tion is the log sum of the posterior probability over all labeled
data points:

FMMI (λ) =
∑
xi∈X

log
pλ (xi|yi) p (yi)∑
c pλ (xi|c) p (c)

, (1)



where λ is the model parameter set, xi is the feature data point
and yi is the corresponding class label. Suppose the model to be
trained for each class is a Gaussian mixture model, which can
be extended to HMM in the context of the speech recognition
system. One often-used optimization scheme is an iterative Ex-
tended Baum-Welch updating procedure, in which the mean and
variance for the class j and mixturem are updated iteratively as
follows:

µ̂jm =
xxxnum
jm − xxxden

jm +Djmµjm

γnum
jm − γden

jm +Djm
(2)

σ̂2
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sssnum
jm − sssden

jm +Djm
(
σ2
jm + µ2

jm

)
γnum
jm − γden

jm +Djm
− µ̂2

jm, (3)

where the superscript “num” represents the correct model cor-
responding to the numerator in eq. (1) and “den” represents the
classification model in the denominator containing all possible
classes. For either model, γjm is the sum of the posterior prob-
abilities of occupation of mixture component m of class j over
the dataset:

γnum
jm =

∑
xi∈X,yi=j

p (m|xi, yi = j)

γden
jm =

∑
xi∈X

p (m|xi)
(4)

and xxxjm and sssjm are respectively the weighted sum of xi and
x2
i over the whole dataset with the weight p (m|xi, yi = j) or
p (m|xi), depending on the superscript is the numerator or de-
nominator model. Djm is a constant set to be the greater of
twice the smallest value that guarantees positive variances or
γden
jm [9].

The re-estimation formula for mixture wights is also de-
rived from Extended Baum-Welch algorithm:

ĉjm =
cjm

{
∂FMMI
∂cjm

+ C
}

∑
m′ cjm′

{
∂FMMI
∂cjm

+ C
} , (5)

where the derivative was suggested [10] in the following form:

∂FMMI

∂cjm
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γnum
jm∑

m′ γnum
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γden
jm∑

m′ γden
jm′

. (6)

As a smoothing technique to prevent the MMI model from
over-training, [9] proposed I-smoothing which backs off the
MMI estimates to the ML estimates with a certain degree. It
can be shown that I-smoothing is equivalent to adding a log
prior distribution to the MMI objective function:

F (λ) =FMMI (λ) + log p (λ)

=FMMI (λ) +
∑
j,m

log p (µjm, σjm), (7)

where the log prior for each j and m is proportional to the log
likelihood of τ artificial data points with mean and variance
from the ML statistics on the numerator model, µnum

jm (ML)
and

σnum
jm (ML)

:

log p
(
µjm, σ

2
jm

)
=
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i=1

log p (x̄i|µjm, σjm), (8)

where the artificial data x̄i’s are generated from the distribution
N
(
µnum
jm (ML)

, σnum
jm (ML)

)
.

Incorporating the prior likelihood into the objective func-
tion amounts to changes in the numerator statistics before the
mean and variance update eqs. (2) and (3):
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3. MMIE with unlabeled data
One way of incorporating unlabeled data into the MMI train-
ing is to add the total likelihood of unlabeled data to the MMI
objective function:

F (λ) = FMMI (λ;DL) + αFML (λ;DU ) , (12)

where

FMMI (λ;DL) =
∑

xi∈DL

log
pλ (xi|yi) p (yi)∑
c pλ (xi|c) p (c)

(13)

FML (λ;DU ) =
∑

xi∈DU

log pλ (xi)

=
∑

xi∈DU

log
∑
c

pλ (xi|c) p (c),
(14)

and α is a scaling factor ranging from 0 to 1. With the modi-
fied objective function in eq.(12), the training process will try to
maximize the posterior probability for the labeled set while the
likelihood of the unlabeled set given the estimated parameter set
needs to be as large as possible.

Maximization of eq. (12) can be solved by maximization of
its weak-sense auxiliary function [9]:

G(λ, λ(old)) =Gnum(λ, λ(old);DL)− Gden(λ, λ(old);DL)

+αGden(λ, λ(old);DU ) + Gsm(λ, λ(old);DL),

(15)

where the first three terms are strong-sense auxiliary functions
derived separately from the log-likelihoods log p(DL|Mnum),
log p(DL|Mden) and log p(DU |Mden); Mden and Mden refer
to the numerator and denominator model introduced in the pre-
vious section. The last term is a smoothing function that doesn’t
affect the local differential but ensures that the sum of the first
three term is at least a convex weak-sense auxiliary function for
optimization.

Eq. (15) differs from the original MMIE criterion only by
an additional term αGden(λ, λ(old);DU ), which can be easily
shown to ultimately lead to changing the numerator statistics
before the mean and variance update eqs. (2) and (3):
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where γden
jm(DU ) is the sum of the posterior probabilities of

occupation of mixture component m of class j, given the de-
nominator (classification) model, over the unlabeled set, and
µden
jm(ML)(DU ) and σden

jm
2

(ML)(DU ) are the ML estimates of mean
and variance from the unlabeled set.



Consequently, the unlabeled data are incorporated to the
model in an “EM-like” way, instead of being hard-classified into
any class as in other iterative semi-supervised approaches. The
form of the modification of the statistics in eq. (16-18) is sim-
ilar to eq. (9-11) for I-smoothing. Therefore we expect it may
have similar smoothing behavior, preventing over-training. A
difference exists, in that unlabeled data backs off the MMI es-
timates to new ML estimates of the classification model using
the unlabeled set, rather than the ML estimates of the numerator
model from the labeled set. As an additional comparison, the H-
Criterion [8] backs off the MMI estimates to the ML estimates
of the denominator (classification) model using the labeled set,
which is less useful in the sense that the labeled set already has
the correct class label and there is no reason to discard that in-
formation.

4. Experiments
To evaluate the performance of our modified MMIE, we con-
ducted experiments on binary phonetic classification of phones
[d] vs. [t] using the TIMIT corpus [11]. For parameter tuning of
τ and α in I-smoothing and unlabeled-smoothing respectively,
we extracted 50 speakers out of the NIST complete test set to
form the development set. The rest of the NIST test set formed
our evaluation test set. The development and evaluation test
set here are the same as the development set and fulltest set de-
fined in [12]. Table 1 summarizes the number of tokens for each
phone in each of the sets. Furthermore, for training on mixed
labeled/unlabeled data, the standard NIST training set was ran-
domly divided into the labeled and unlabeled sets with different
ratios, and we assumed the phone class labels in the unlabeled
set are unavailable.

Table 1: Number of tokens for phones “d” and “t” in the TIMIT
training, development and test set.

d t
Train 2432 3948

Development 239 413
Test 602 954

We used segmental features [12] in the phonetic classifica-
tion task. For each phone occurrence, a fixed-length vector was
calculated from the frame-based spectral features (12 PLP coef-
ficients plus energy) with a 5 ms frame rate and a 25 ms Ham-
ming window. More specifically, we divided the frames for each
phone into three regions with 3-4-3 proportion and calculated
the PLP average over each region. Three averages plus the log
duration of that phone gave a 40-dimensional (13×3+1) mea-
surement vector. The Gaussian mixture model for each phone
had two mixture components for all of our experiments.

4.1. MMIE with Unlabeled-Smoothing

As mentioned in the beginning of this section, r =
15, 20, 30, 100% of the training set was the labeled set and the
rest formed the unlabeled set. The labeled set was used to train
an initialized model using MLE, based on which other MMIE
algorithms continued the training iteration. We found the best
values of τ and α for I-smoothing and “unlabeled smoothing”
on the development set, and the model trained with that value
set was tested on the evaluation test set. In our experiments, α
was usually within the range from 0.01 to 0.05, τ from 20 to
50.

In addition, we also applied the algorithm in a transductive
way. The test data are no different from unlabeled data except
that their classification results are collected for the system eval-
uation. Therefore, the test set can be regarded as a part of the
unlabeled set as well; the whole test set was added to the unla-
beled set, and the same objective function in eq. (12) still held
for training a transductive-MMIE model.

The classification error rates are listed in Table 2. Any kind
of MMIE approach has significantly less error than MLE. Re-
gardless of the proportion of unlabeled data, the error rates have
a general trend of decreasing starting from MLE to transduc-
tive MMIE as seen from the table; MMIE with I-smoothing im-
proves over MLE, MMIE with unlabeled data improves over I-
smoothing, and transductive-MMIE improves over MMIE with
unlabeled data. On the other hand, the improvement becomes
smaller as the proportion of labeled data increases (15% >
20% > 30%).

Table 2: Error rates (%) of Gaussian mixture models with r =
15, 20, 30, 100% of the training set being the labeled set and
the rest being the unlabeled set.

15% 20% 30% 100%
MLE 38.69 21.02 21.79 20.69

MMIE with I-smoothing 19.22 20.37 19.22 17.99
MMIE with U-smoothing 18.25 20.18 19.15 N/A

Transductive-MMIE 17.87 19.99 19.15 17.99

4.2. MMIE for the gender-mismatched case

To further demonstrate the benefit of unlabeled data, we evalu-
ated our algorithm on the mismatched case where the training
and testing corpus have quite different speech characteristics.
We wanted to examine whether unlabeled data which share the
same characteristics with the testing corpus would improve over
the MMIE model trained only with the labeled set. One of ex-
ample of mismatch is gender-mismatch. Therefore, instead of
randomly dividing the standard training set into the labeled and
unlabeled set, we divided it into two sets by the gender of the
speakers, male being the labeled set and female being the un-
labeled set, and the opposite setting was also tried. From the
original development and test set defined in section 4.1, tokens
of the same gender as the unlabeled set were extracted to form
the respective development set and test set here. The speaker
identities were never overlapped across any sets. Table 3 sum-
marizes the number of data points for each of the sets in the
gender-mismatched cases.

The classification error rates are listed in Table 4. In both
settings, MMIE with either I-smoothing or unlabeled data im-
proves over MLE by a large amount. MMIE with unlabeled
data improves over MMIE with pure I-smoothing by absolute
2.06% and 2.35%, for the respective gender setting.

5. Discussion
In terms of the error rate reduction, unlabeled data helped most
in the mismatched case, especially when labeled data were from
female speakers and unlabeled data were from male speak-
ers. Other than that, the improvements from MMIE with I-
smoothing to MMIE with unlabeled data were consistent, but
not statistically significant, perhaps because of the small size of
the test set. We expect to see more significant differences when
the task is extended to multi-class phonetic classification.



Table 3: Number of tokens for phones “d” and “t” in the
labeled, unlabeled, development and test set in the gender-
mismatched cases.

Labeled male female
Unlabeled female male

d t d t
Labeled 1681 2791 751 1157

Unlabeled 451 1157 1681 2791
Development 91 131 148 282

Test 219 316 383 638

Table 4: Mismatched case: Error rates (%) of Gaussian mixture
models. * indicates that entries significantly lower than their
predecessors (McNemar’s test, p = 0.05).

Labeled male female
Unlabeled female male

MLE 26.17 29.97
MMIE with I-smoothing 18.13* 23.02*

MMIE with unlabeled data 16.07 20.67*

In the matched case, transductive-MMIE resulted in con-
sistent (but not statistically significant) lower error rates than
MMIE with unlabeled-smoothing. This shows that our frame-
work allows transductive learning based on discriminative train-
ing, but unlike other transductive approaches such as transduc-
tive SVM [13], we don’t have to worry about issues such as set-
ting a threshold or defining a confidence score. We also notice
that when there was no available unlabeled data, taking the test
set as the only unlabeled data for transductive learning did not
improve over MMIE with I-smoothing, perhaps because the test
set alone was too small to have an impact on the model training
through our proposed objective function.

6. Conclusions and Future Work

A new training criterion that integrates Maximum Mutual Infor-
mation for labeled data and Maximum Likelihood for unlabeled
data has been introduced. Through the new training criterion,
unlabeled data can smooth MMI estimates in a semi-supervised
acoustic model training scenario; it can also provide informa-
tion about new speech characteristics to the unadapted model in
an unsupervised model adaptation scenario. In our experiments
of phonetic classification, there are consistent improvements in
error rates from MLE to MMIE with I-smoothing, and then to
MMIE with unlabeled-smoothing. Moreover, error rates can be
further reduced by transductive-MMIE, in which the test set is
also a part of the unlabeled set. Overall, the best benefit by un-
labeled data was seen in the gender-mismatched case, with a
reduction in classification error rates 9.3% absolute compared
to MLE and a 2.35% absolute lower error rate than MMIE with
pure I-smoothing.

In the future, we plan to conduct experiments on multi-class
phonetic classification. Our ultimate goal is to apply the new
training criterion to the task of phonetic recognition in order to
investigate the impact of unlabeled data on discriminative train-
ing of the acoustic model.
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