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Abstract

Emotive audio-visual avatars have the potential of sig-
nificantly improving the quality of Human-Computer In-
teraction (HCI). In this paper, the various technical ap-
proaches of a novel framework leading to a text-driven 3D
Emotive Audio-Visual Avatar (EAVA) are proposed. Pri-
mary work is focused on 3D face modeling, realistic emo-
tional facial expression animation, emotive speech synthe-
sis, and the co-articulation of speech gestures (i.e., lip
movements due to speech production) and facial expres-
sions. Experimental results clearly indicate that a certain
degree of naturalness and expressiveness has been achieved
by EAVA in both audio and visual aspects. Promising poten-
tial improvements can be expected by incorporating various
data-driven statistical learning models into the framework.

1. Introduction

Avatars are virtual agents for Human-Computer Interac-
tion (HCI). They introduce the presence of an individual
to capture attention, mediate conversational cues, and com-
municate emotional affect, personality and identity in many
application scenarios. They provide realistic facial expres-
sions and natural sounding speech to help the understand-
ing of the content and intent of a message. If computers are
embodied and represented by avatars, the quality of HCI
can be significantly improved. Customized avatars may
also serve as assistant personal clones that enable individu-
als who have speech and hearing problems to participate in
daily spoken communications.

The use of avatars is now emerging in the marketplace,
while the understanding of human communication has not
yet advanced to the point where it is possible to make
avatars that demonstrate interactions with realistic emotive
speech and emotional facial expressions. The key research
issues to enable avatars to communicate subtle or complex
emotions are how to model 3D faces, how to animate realis-
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tic emotional facial expressions, how to synthesize natural
sounding emotive speech, and how to combine speech ges-
tures (i.e. lip movements due to speech production) and
facial expressions both naturally and realistically.

We have been conducting basic research leading to
methodologies and algorithms for constructing a text-driven
3D Emotive Audio-Visual Avatar (EAVA). This is an in-
terdisciplinary research that is related to speech, computer
graphics and computer vision. The success of this project is
believed to advance significantly the state-of-the-art of HCI.

2. Related work

2.1. Face modeling and animation

3D face modeling has been an active research topic for
computer graphics and computer vision [2, 1]. People have
used interactive tools to design geometric 3D face mod-
els under the guidance of prior knowledge. As laser-based
range scanners such as the CyberwareTM scanner have be-
come commercially available, people have been able to
measure the 3D geometry of human faces so that geometric
3D face models can be constructed [2]. Alternatively, some
researchers have proposed to build 3D face models from 2D
images using computer vision techniques [14, 2].

A geometric face model defines the 3D geometry of a
static face. By deforming the geometric face model spa-
tially and temporally, we can obtain different facial expres-
sions. The free-form interpolation model is one of the most
popular facial deformation models in the literature [14]. A
set of control points are defined on the 3D geometry of
the face model and facial deformation is achieved through
proper displacements of these control points. The displace-
ments of the rest of the facial geometry are obtained by a
certain interpolation scheme. To approximate the facial de-
formation space, linear subspace methods have been pro-
posed. One example is the Facial Action Coding System
(FACS) [15] which describes arbitrary facial deformation as
a linear combination of Action Units (AUs). Hong et al [1]
applied Principal Component Analysis (PCA) to real facial
motion captured data and derived a few bases called Motion
Units (MUs). Any facial deformation can then be approxi-



mated by a linear combination of the MUs. Compared with
AUs, MUs are automatically derived from data. Therefore,
labor-intensive manual work can be avoided. In addition,
MUs can yield smaller reconstruction error than AUs.

2.2. Emotive speech synthesis

Attempts to add emotions to synthetic speech have ex-
isted for over a decade. Cahn [6] and Murray [7] both used
a commercial formant synthesizer (i.e., DECTalk) to gen-
erate emotive speech based on the emotion-specific acous-
tic parameter settings that they derived from the literature.
Burkhardt [8] also employed a formant synthesizer to syn-
thesize emotive speech. Instead of deriving the acous-
tic profiles from the literature, he conducted perception-
oriented experiments to find optimal values for the various
parameters. Although partial success was achieved, reduced
naturalness was reported due to the imperfect rules inherent
with formant synthesis.

Several later undertakings and smaller studies have made
use of the diphone synthesis approach. Schroder [4] used
a diphone synthesizer to model a continuum of intensity-
varying emotional states under the emotion dimension
framework. He searched for acoustic correlates of emo-
tions by analysis of a carefully labeled emotional speech
database and established a mapping of the points in the
emotion space to their acoustic correlates. These acoustic
correlates are then used to tune the prosodic parameters in
the diphone synthesizer to generate emotive speech. The
synthesized speech is observed to convey only non-extreme
emotions and thus cannot be considered successful if it is
used alone. Complimentary channels such as facial expres-
sions are required to be used together in order for the user
to fully comprehend the emotional state.

One might want to model a few “well-defined” emotion
categories as close as possible, and it seems unit selection
synthesis based on emotion-specific speech database can be
a suitable choice for this purpose [9, 10]. Pitrelli et. al.
at IBM [11] recorded a large database of neutral speech
containing 11 hours of data as well as several relatively
smaller databases of expressive speech (1 hour of data for
each database). Instead of selecting units from one partic-
ular database at run time, they blended all the databases
together and selected units from the blended database ac-
cording to some criterion. They assumed that many of the
segments comprising a sentence, spoken expressively, could
come from the neutral database.

2.3. Co-articulation of speech and expressions

On the human faces, it is unclear how speech gestures
are dynamically combined with facial expressions to en-
sure natural, realistic and coherent appearances. Some
researchers [12, 13] have used techniques like Indepen-
dent Component Analysis (ICA) and PCA to separate and
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Figure 1. System framework of EAVA.

model the viseme and expression spaces. However, nei-
ther is based on the theoretical grounding for determining
the interactions and relative contributions of the respective
sources that together cause facial deformation.

3. Framework and approaches
In the research toward building a text-driven 3D emo-

tive audio-visual avatar, we design a system framework as
illustrated in Figure 1. In this framework, text is converted
into emotive speech by emotive speech synthesis. Simul-
taneously, a phoneme sequence with timing is produced.
The phoneme sequence is mapped into a viseme sequence
that defines the speech gestures. The emotional states, ex-
tracted from the text (with emotion markers), decide the fa-
cial expressions, which will be combined with speech ges-
tures synchronously and naturally. The key frame technique
[14] is used to animate the sequence. Primary research is
focused on emotional facial expression animation, emotive
speech synthesis, and the co-articulation of speech gestures
and facial expressions.

3.1. 3D face modeling

Our previous work on 3D face modeling (iFace) and an-
imation [14, 1] lays a partial foundation of this research.
iFace provides a research platform for 3D face modeling
and animation. It takes as input the CyberwareTM scan-
ner data of a person’s face and fits the data with a generic
head model. The output is a customized geometric 3D face
model ready for animation.

3.2. Emotional expression animation

We use the geometric 3D face model described earlier
to animate facial expressions. On the face model, a con-
trol model is defined. The control model consists of 101
vertices and 164 triangles which cover the whole face re-
gion and divide it into local patches. By dragging the ver-
tices of the control model, one can deform the 3D face
model to arbitrary shapes. A set of basic facial shapes cor-
responding to different fullblown emotional facial expres-
sions are designed and parameterized as the displacements



Table 1. Phonemes (Ph), examples (Ex), and visemes (Vi).
Ph Ex Vi Ph Ex Vi Ph Ex Vi
i beet IY I bit AX S assure SH
E bet AY { bat AE h hope AY
r= above AX u boot W v vine F
U book AX V above AX D thy TH
O caught AO A father AA z resign T
@ butter AX EI bay NE Z azure SH
AI bye AY OI boy T tS church SH
aU about AY @U boat OW dZ judge SH
p pan M t tan T l lent LL
k can T b ban M r rent R
d dan T g gander T j yes T
m me M n knee T w went W
N sing AY f fine F (silent) NE
T thigh TH s sign T

of all the vertices of the face model from their initial values
corresponding to neutral state. Let those displacements be
∆~Vi, i = 1, 2, ..., N , where N is the number of vertices of
the face model. The vertices of the deformed face model are
given by ~V0i + ρ × ∆~Vi, i = 1, 2, ..., N , where ~V0i are the
vertices of the neutral face and 0 ≤ ρ ≤ 1 is the magnitude
coefficient representing the intensity of the facial expres-
sion. ρ = 1 corresponds to the fullblown emotional facial
expression and ρ = 0 corresponds to the neutral expression.

Speech gestures are implemented via visemes. We have
defined 17 visemes, each of which corresponds to one or
more of the 40 phonemes in American English. Table 1
lists all the phonemes and the corresponding visemes that
they are mapped to. Phoneme-to-viseme mapping can thus
be done by simple table look-up.

3.3. Emotive TTS synthesis

To synthesize emotive speech, we use a diphone synthe-
sizer and adopt a rule-based approach for prosody modi-
fication. The ability of diphone synthesis to control the
prosodic parameters for speech synthesis is a very nice
property that enables the generation of emotional affect in
synthetic speech by explicitly modeling the emotion. In or-
der to produce high-quality synthetic speech, a TTS syn-
thesis system usually consists of two main components: a
Natural Language Processing (NLP) module and Digital
Signal Processing (DSP) module. The NLP module per-
forms necessary text analysis and prosody prediction pro-
cedures to convert orthographical text into proper phonetic
transcription (i.e., phonemes) together with the desired in-
tonation and rhythm (i.e., prosody). There are numerous
methods that have been proposed and implemented for the
NLP module. The DSP module takes as input the phonetic
transcription and prosodic description which are the output
of the NLP module, and transforms them into a speech sig-
nal. Likewise, various DSP techniques have been proposed
for this purpose [3].

Figure 2 illustrates a general framework of emotive TTS
synthesis using a diphone synthesizer. In this framework,

an emotion transformer is inserted into the functional dia-
gram of a general TTS synthesis system and plays a role
that bridges the NLP and DSP modules. The NLP module
generates phonemes and prosody corresponding to the neu-
tral state (i.e., neutral prosody). The emotion transformer is
aimed at transforming the neutral prosody into the desired
emotive prosody as well as transforming the voice quality of
the synthetic speech. The phonemes and emotive prosody
are then passed on to the DSP module to synthesize emotive
speech using a diphone synthesizer. While many aspects of
this framework, especially the techniques, methods, and al-
gorithms engaged in the NLP and DSP modules, have been
thoroughly investigated in the literature [3], certain aspects
of this framework must be singled out in this paper.

3.3.1 Prosody transformation by difference approach

Prosody transformation of the emotion transformer is
achieved through a difference approach, which aims at find-
ing the differences of emotional states with respect to the
neutral state. The emotion transformer either maintains a
set of prosody manipulation rules defining the variations of
prosodic parameters between the neutral prosody and the
emotive one, or trains a set of statistical prosody prediction
models that predict these parameter variations given the fea-
tures representing a particular textual context. The basic
idea is formulated as ∆p = pe − pn, where ∆p denotes the
parameter differences, pn denotes the neutral prosodic pa-
rameters, and pe denotes the emotive prosodic parameters.

At synthesis time, the rules or the prediction outputs of
the models will be applied to the neutral prosody, obtained
via the NLP module. The emotive prosody can thus be ob-
tained by summing up the neutral prosody and the predicted
variations. The basic idea is formulated as p̂e = p̂n + ∆̂p,
where ∆̂p denotes predicted parameter difference, p̂n de-
notes the predicted neutral prosodic parameters, and p̂e de-
notes the predicted emotive prosodic parameters.

There are obvious advantages of using a difference ap-
proach over the use of a full approach that aims at find-
ing the emotive prosody directly. One advantage is that
the differences of the prosodic parameters between the neu-
tral prosody and the emotive one have far smaller dynamic
ranges than the prosodic parameters themselves and there-
fore the difference approach requires far less data to train
the models than the full approach (e.g., 15 minutes versus
several hours). Another advantage is that the difference ap-
proach makes possible the derivation of the prosody manip-
ulation rules which are otherwise impossible to be obtained.

Practically, prosody transformation is achieved through
applying a set of prosody manipulation rules. The global
prosody settings that we use are given in Table 2, which are
similar to those used in [19], and the prosody manipulation
rules are given in Table 3.
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Figure 2. General framework of emotive TTS synthesis using a diphone synthesizer.

Table 2. Global prosody settings. f0 is the fundamental frequency
of speech perceived as the pitch.

Parameter Description
f0 mean mean value of f0 contour, in Hz
f0 range difference between max. and min. of f0 contour
f0 variability degree of variation of f0 contour
f0 contour shape shape of f0 contour (rising, falling)
speaking rate duration of speech

3.3.2 Voice quality transformation

Some studies indicate that in addition to prosody transfor-
mation, voice quality transformation is important for syn-
thesizing emotive speech and may be indispensable for
some emotion categories [18]. In diphone synthesis, it is
particularly not easy to control voice quality, as it is very
difficult to modify the voice quality of a diphone database.
However, one partial remedy of this is to record separate
diphone databases with different vocal efforts [5]. Dur-
ing synthesis, the system switches among different voice-
quality diphone databases and select the diphone units from
the appropriate database. Another low-cost partial remedy
is to use jitters to simulate voice quality transformation. Jit-
ters are fast fluctuations of the f0 contour. Thus, adding
jitters is essentially equivalent to adding noise to the f0

contour. By jitter simulation we can observe voice quality
change in synthetic speech to a certain degree.

3.3.3 Prosody matching of diphone units

Diphone synthesis is performed by concatenating small seg-
ments of recorded speech called diphones together to create
a speech signal. These segments of speech are recorded
by a human speaker in a monotonic pitch to aid the con-
catenation process, which is carried out by employing one
of the signal processing techniques including the resid-
ual excited linear prediction (RELP) technique, the time-
domain pitch synchronous overlap-add (TD-PSOLA) tech-
nique, and the multi-band resynthesis pitch synchronous
overlap-add (MBR-PSOLA) technique [3]. The prosody of
the diphone units is also forced to match that of the desired
specification at this point.

It is widely admitted that diphone synthesis inevitably

Table 3. Prosody modification rules.
Manipulation Description
f0 mean shift the f0 mean by multiplying all f0 values

by a factor
f0 range widen or narrow the f0 range by shifting each f0

value by a percentile of its distance to the f0 mean
f0 variability increase or decrease the global f0 variability by

adjusting the f0 range of each syllable
f0 contour reshape the f0 contour on either phrase or syllable
shape level by making it rise or fall controlled by a gradient
speaking rate lengthen or shorten the duration of speech at various

levels: global phrase level; syllable level based on
stress type (unstressed, word-stressed, phrase-stressed);
sound level based on category (vowels, nasals, stops)

introduces artifacts to synthetic speech due to prosody mod-
ification. However, in order to generate emotive speech, the
diphone units are subject to extreme prosody modification.
In order to alleviate this difficulty, we can record the di-
phone database with multiple instances for every diphone.
The same diphone will be recorded monotonically but at
multiple pitch levels and with multiple durations. During
synthesis, given a target prosody specification, we can then
choose the diphone unit whose prosody parameters are the
closest to those of the target. In this way we believe that we
can obtain higher-quality emotive speech by reducing the
amount of signal processing required for prosody matching
in a diphone synthesizer.

3.4. A rule-based emotive TTS synthesis system
based on Festival-MBROLA architecture

In order to demonstrate the validity of our proposed gen-
eral framework of emotive TTS synthesis, we have imple-
mented a rule-based emotive TTS synthesis system using a
diphone synthesizer under the guidance of the framework.
The diagram is shown in Figure 3. This system has been
built based on the Festival-MBROLA architecture. The Fes-
tival system [16] is used to perform text analysis and predict
the neutral prosody targets from text. Emotive speech syn-
thesis is then done by manipulation of prosodic parameters
(primarily f0 and duration) using a difference approach and
simulation of voice quality variation. First, a set of rules de-
scribing how prosodic parameters deviate from their initial
values corresponding to neutral state to new values corre-
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Figure 3. Diagram for emotive speech synthesis.

sponding to a specific emotional state are determined. Next,
these rules are applied to the neutral prosody obtained from
Festival to generate the desired emotional prosody (a se-
quence of phonemes, along with the associated prosodic
parameters), which is then passed to MBROLA [17], a free-
for-non-commercial-use diphone synthesizer developed by
the TCTS Lab of the Faculte Polytechnique de Mons (Bel-
gium), to create emotive speech.

The core part of the system, i.e., the emotion trans-
former, consists of a set of rules that define the various
manipulations of the prosody and voice quality of speech.
More specifically, the emotion transformer takes as input
the phonemes and neutral prosody as well as other related
information that are the output of the NLP module of Festi-
val, applies appropriate parameterized rules for pitch trans-
formation, duration transformation and voice quality trans-
formation, and outputs an intermediate file containing the
same phonemes and emotive prosody.

3.5. Co-articulation of speech and expressions

Due to the complex cooperation of facial muscular activ-
ities, the movements of the lower face are commonly con-
trolled by both speech gestures and facial expressions. In
situations where there is only neutral facial expression, the
movements of the lower face can be assumed to be domi-
nated by speech gestures. However, problems occur when
emotional facial expressions are taken into account as in
EAVA. Due to the highly dynamic nature of speech gestures
and facial expressions, the exact interactions and contribu-
tions of these two sources that control facial movements are
unknown. We propose a linear combination approach by
assuming that speech gestures and facial expressions con-
tribute equally (or weighted equally) to facial deformations.
This assumption however can lead to faulty results ( e.g., the
mouth will never close while laughing and speaking). An ad
hoc method may be used to remedy this problem. We first
use the linear combination approach and then identify the
top co-articulation difficulties between speech gestures and
facial expressions. We can “fix” these difficulties by manu-
ally creating “emotive visemes”. This approach, though not
systematic, can work pretty well in practice.

4. Experiments
The system framework and approaches described in the

previous section have resulted in a fully functional sys-
tem of text-driven 3D emotive audio-visual avatar, EAVA.
We have obtained preliminary but promising experiment re-

sults for rendering neutral as well as several basic emotions:
happy, joyful, sad, angry, and fearful. Figure 4 displays two
examples of the results: The animation sequence of emo-
tional facial expressions along with the associated wave-
forms of synthetic emotive speech generated for happy and
sad emotional states. That is, the avatar says “This is happy
voice” and “This is sad voice” respectively.

Informal evaluations within our group show that for
emotive speech, negative emotions (e.g., sad, angry, fear)
are more successfully synthesized than positive emotions
(happy, joyful). For some emotions such as joyful and fear,
artifacts are easily observed in the synthesized speech due to
extreme prosody modification by signal processing. While
the synthetic emotive speech alone cannot be always rec-
ognized by a listener, it can be easily distinguished when
combined with compatible emotional facial expressions.

We have designed and conducted three subjective listen-
ing experiments on the results generated by EAVA. Experi-
ment 1 uses six speech files corresponding to the six distinct
emotions, synthesized by the system using the same seman-
tically neutral sentence (i.e., a number). Experiment 2 also
uses six speech files, but each of the files was synthesized
using a semantically meaningful sentence appropriate for
the emotion that it carries. Experiment 3 incorporates the
visual channel based on experiment 1. That is, each speech
file was provided with an emotive talking head showing
emotional facial expressions and lip movements consistent
and synchronized with the speech. Experiment 4 incorpo-
rates the visual channel based on experiment 2. 20 subjects
(10 males and 10 females) were asked to listen to the speech
files (with the help of other channels such as verbal content
and facial expressions if possible), determine the emotion
for each speech file (by forced-choice), and rate his or her
decision with a confidence score (1: not sure, 2: likely, 3:
very likely, 4: sure, 5: very sure). The results are shown
in Table 4. In the table, recognition rate is the ratio of the
correct choices, and average score is the average confidence
score computed for the correct choices.

It is shown in the results of the subjective listening ex-
periments that our system has achieved a certain degree of
expressiveness despite of the relatively not perfect perfor-
mance of the prosody prediction model of Festival. As can
be clearly seen, negative emotions (e.g, sad, afraid, angry)
are more successfully synthesized than positive emotions
(e.g, happy). This observation is consistent with what has
been found in the literature. In addition, we found that the
emotional states “happy” and “joyful” are often mistaken
for each other. So are “afraid” and “angry”, mostly due
to the close similarity of the respective pair of emotions.
By incorporating other channels that convey emotions such
as verbal content and facial expressions, the perception of
emotional affect in synthetic speech can be significantly im-
proved.



Figure 4. Examples of animation of emotive audio-visual avatar with associated synthetic emotive speech waveform. (Top): The avatar
says “ This is happy voice.” (Bottom): The avatar says “ This is sad voice.”

Table 4. Results of subjective listening experiments. R ←→Recognition Rate. S ←→Average Confidence Score. Experiment 1 to 4 are
speech only, speech+verbal content, speech+facial expression, and speech+verbal content+facial expression, respectively.

Emotion Experiment 1 Experiment 2 Experiment 3 Experiment 4
R(%) S R(%) S R(%) S R(%) S

neutral 54.54 2.83 100 4.36 90.90 4.10 100 4.81
happy 18.18 2.50 63.63 4.57 63.63 4.43 54.54 4.50
joyful 45.45 2.80 63.63 4.86 63.63 4.29 45.45 5.00

sad 36.36 2.75 81.81 4.67 100 4.18 100 4.81
angry 18.18 2.00 90.90 4.30 90.90 4.00 100 4.63
afraid 45.45 2.40 81.81 4.89 72.72 4.00 81.81 5.00

5. Conclusion and future work
This paper reported the various aspects of research lead-

ing to a text-driven 3D emotive audio-visual avatar, EAVA.
Primary work is focused on 3D face modeling, realistic
emotional facial expression animation, emotive speech syn-
thesis, and the co-articulation of speech gestures and facial
expressions. We have obtained preliminary but promising
experiment results as well as built a fully functional sys-
tem. Particularly, our ongoing work is to pursue data-driven
methodologies in resolving the different but related aspects
of this research. Instead of using prosody manipulation
rules, potential improvements to the current EAVA system
can be made within the presented general framework by us-
ing statistical prosody prediction models trained with di-
phone databases of different vocal efforts and multi-pitch
multi-duration.
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