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Abstract
We propose a framework that leverages articulatory phonology

for speech recognition. “Gestural pattern vectors” (GPV) encode
the instantaneous gestural activations that exist across all tract vari-
ables at each time. Given a speech observation, recognizing the se-
quence of GPV recovers the ensemble of gestural activations, i.e.,
the gestural score. For each word in the vocabulary, we use a task
dynamic model of inter-articulator speech coordination to gener-
ate the “canonical” gestural score. Speech recognition is achieved
by matching the ensemble of gestural activations. In particular,
we estimate the likelihood of the recognized GPV sequence on
word-dependent GPV sequence models trained using the “canon-
ical” gestural scores. These likelihoods, weighted by confidence
score of the recognized GPVs, are used in a Bayesian speech rec-
ognizer.

Pilot gestural score recovery and word classification experi-
ments are carried out using synthesized data from one speaker.
The observation distribution of each GPV is modeled by an ar-
tificial neural network and Gaussian mixture tandem model. Bi-
gram GPV sequence models are used to distinguish gestural scores
of different words. Given the tract variable time functions, about
80% of the instantaneous gestural activation is correctly recovered.
Word recognition accuracy is over 85% for a vocabulary of 139
words with no training observations. These results suggest that the
proposed framework might be a viable alternative to the classic
sequence-of-phones model.
Index Terms: speech production, speech gesture, tandem model,
artificial neural network, Gaussian mixture model

1. Introduction
Current state-of-the-art speech recognition systems adopt the as-
sumption that speech is a sequence of phones. These systems work
much better for carefully articulated speech, such as broadcast
news, than for conversational speech, which has more significant
coarticulation and reduction. Basic recognition units designed for
coarticulation might be more efficient than the traditional phones.
Articulatory phonology represents speech as an ensemble of ges-
tures. This representation is relatively invariant as the gestures
can generate coarticulated or reduced speech when they overlap in
time[1, 2]. This work proposes a speech recognition framework
motivated by articulatory phonology.

Several methods exist for speech recognition using speech pro-
duction knowledge [3, 4, 5]. King et al. [6] gave a comprehensive
review. There have been studies on recovering gestural activation
intervals from acoustic signals or articulatory movements using the
temporal decomposition method [7, 8]. Livescu et al.[5] proposed
recovering gesture ensembles as the state variables in a dynamic

Bayesian network. Our recent work that proposed the instanta-
neous “gestural pattern vector” (GPV) [9] is similar in philosophy
with [5], but different in model design and all other computational
details. Each GPV encodes gestural activation information across
tract variables in the gestural score at a given time.

In this work, we propose a speech recognition framework us-
ing GPVs instead of phones. Given a speech observation, recog-
nizing the GPV sequence recovers the intervals of gesture activa-
tions together with the target and stiffness of their control regimes,
i.e., the complete gestural score. Word recognition is achieved
by matching the recognized GPV sequence to canonical gestural
scores for each vocabulary word, generated by a task dynamic
model of inter-articulator speech coordination [10, 11].

In particular, the recognized GPV sequence is scored by word-
specific bigram GPV sequence models, each trained using the GPV
sequence converted from the “canonical” gestural scores. Sim-
ilar to [9], we use an artificial neural network and Gaussian mix-
ture tandem model to estimate the likelihood of speech observation
given each GPV. Both the GPV sequence score and the observation
likelihood for individual GPVs are used in a Maximum a Posteriori
speech recognition framework.

We carry out a pilot experiment of gestural score recovery and
word classification on synthesized data from one speaker. Previous
work has reported successful recovery of the tract variable time
functions from speech acoustics[6, 12]. In this work, we use tract
variable time functions in the place of speech observation, since
they are better correlated with the gestural activation than acoustic
features. About 80% of the instantaneous gestural activation is
correctly recovered for speech content unseen in training. Word
classification accuracy is over 85% for a vocabulary of 139 words
with no training observations.

2. Articulatory phonology and
gestural pattern vectors

Articulatory phonology employs constriction gestures as basic
units. Gestures as constriction actions are defined by 8 vocal
tract variables at 5 constricting devices along the vocal tract –
five constriction degree variables: lip aperture (LA), tongue body
(TBCD), tongue tip (TTCD), velum (VEL), and glottis (GLO); and
three constriction location variables: lip protrusion (LP), tongue
tip (TTCL), tongue body (TBCL). For a given constriction gesture,
the activation interval (onset and offset times) and dynamic param-
eters (target/stiffness/damping) are represented in a gestural score.
A gesture defined for a vocal tract variable involves its correspond-
ing articulators and some articulators can be shared by different
gestures [1]. The task-dynamic speech production model [13] pro-
vides a mathematical implementation of the gesture-to-articulator



mapping, and generates vocal tract (constriction) variables and ar-
ticulator time functions from the gestural score for a given utter-
ance. The tract variable time functions, which shape the acoustics
of speech, are regulated by time-varying gestural dynamics param-
eterized by the target and stiffness parameters of the constriction
gestures.

Speech recognition systems employing traditional phones as
basic units suffer from the failure to capture direct relations to the
corresponding phonetic variations such as coarticulation and re-
duction. We previously proposed “gestural pattern vector” (GPV)
to encode discretized instantaneous gestural activation across tract
variables [9]. A GPV (Figure 1) contains the discretized dynamic
parameters (constriction target, stiffness) for existing gesture acti-
vation at each time frame. The speech gestural score, which is an
ensemble of gestures distinctive to speech content, can be approx-
imated by a sequence of GPVs.

Figure 1: Tract variable time functions (the curves), gestures (the
steps) and the gestural pattern vector defined on one frame (5ms)
of the utterance “affirmative”.

3. GPV-based speech recognition
We propose a speech recognition framework, illustrated in Figure
2, as an alternative to the classic sequence-of-phones model. The
proposed framework uses speech gestures as the invariant repre-
sentation of human speech. Although the detailed timing of gestu-
ral activation changes with context, the set of involved gestures is
relatively invariant. The ensemble of gestures is approximated by
a sequence of GPVs. To classify recognized GPV sequences into
words, we use GPV sequence models trained on canonical GPV
sequences created from canonical gestural scores for each vocab-
ulary word.

Speech recognition finds the word, w, with Maximum a Pos-
teriori probability:

W = argmaxiP (Wi|O) (1)
≈ argmaxip(GPV seqi, Wi, O)/p(O)

= argmaxip(GPV seqi, Wi, O), (2)

where p(GPV seqi, Wi, O) is the joint probability of the ith word,
the recognized GPV sequence GPV seqi, and the observation O.
GPV seqi is the hypothesis obtained by Viterbi decoding using
the GPV sequence model GPV SeqMdli for the vocabulary word
Wi.

If the priors for different words are assumed to be uniform,
i.e., p(Wi) = p(Wj) ,

W ≈ argmaxip(O, GPV seqi|Wi), (3)

where p(O, GPV seqi|Wi) is the joint likelihood of the observa-
tion and the GPV sequence recognized using the tandem model
and the GPV sequence model for the ith word,

p(O, GPV seqi|Wi) (4)
= p(O|GPV seqi, Wi) ∗ p(GPV seqi|Wi)

=

N∏
n=1

p(On|GPVn) ∗ p(GPV seqi|Wi),

where GPVn, n ∈ {1, .., N} constitute the GPV sequence
GPV seqi.

Equations 3 and 4 indicate that word classification has been
converted to a series of GPV sequence recognition problems.
Each uses a word-specific GPV sequence model, and results in
a score that can be decomposed into confidence scores of recog-
nized GPVs and likelihoods of the GPV sequence on the particular
word.

3.1. Hybrid ANN-GMM likelihood model for GPV

Previous work has reported successful recovery of the tract vari-
able time functions from speech acoustics[6, 12]. Here we briefly
present the models used to recognize individual GPVs from the
tract variable time functions near the local time of interest. For
details, please refer to our earlier work [9].

Classification of the GPVs is achieved using an artificial neu-
ral network and Gaussian mixture (ANN-GMM) hybrid model,
given the tract variable time functions in local time windows cen-
tered at the concerned GPV. The hybrid model uses a discrimi-
natively trained artificial neural network (ANN) to estimate pos-
terior probabilities across all GPVs, ~P (GPV |O), which are then
subject to a two-step transform F and used as input features to
Gaussian mixture models (GMM). The transform F first applies
log
(

1−~P (GPV |O)

1+~P (GPV |O)

)
and then adopts Principal Component Analy-

sis (PCA) for decorrelation and dimension reduction.
The GMM estimates the following likelihood for use in the

proposed framework,

p(On|GPVn) ≈ p(F (~P (GPVn|On))|GPVn). (5)

Figure 2: Speech recognition framework based on GPV.



3.2. GPV sequence recognition

Although the ensemble of gestural activations tends to be distinc-
tive to words, their timing, both intergestural and intragestural,
can vary as a function of prosody or performance (e.g., rate, ca-
sualness). The recovery of the gestural score is therefore of more
interest than the classification of individual GPVs. gestural score
recovery can be tackled as GPV sequence recognition. As dis-
cussed earlier in this section, word classification is also a series of
GPV sequence recognition problems. In particular, these are GPV
sequence recognizers informed of word-specific characteristics in
sequential information.

Given the characteristics of the gestural score, we need a GPV
sequence model that can capture statistics about gestural activa-
tions, but is not too sensitive to errors in the GPV sequence output
by the hybrid model. N-gram has been widely used as the lan-
guage model for speech recognition as well as other natural lan-
guage processing applications. Different from its usual usage, we
adopt N-gram as the GPV sequence model to approximate the joint
probability of GPV sequences. While there are other options for
sequence modeling, using an N-gram GPV sequence model has its
own merits. First, it captures frequencies of different GPV types as
well as local GPV sequence patterns, while allowing shifting and
order swapping of different portions of a GPV sequence. Second,
it is computationally inexpensive, and is comparatively robust for
training on a small dataset.

The word-independent or word-specific N-gram GPV se-
quence models are trained using GPV sequences from all train-
ing utterances or a particular word respectively. The former cap-
tures the general characteristics of a GPV sequence, resulting from
the physical constraints inherent to consecutive gestural activation.
The latter reveals information about the ensemble of gestures in a
particular word, therefore it can be used to distinguish between dif-
ferent words. To maintain robustness and smoothness of the word-
specific N-gram GPV sequence models, they are interpolated with
the word-independent model.

We use a task dynamic model of inter-articulator speech co-
ordination, implemented in the Haskins Laboratories speech pro-
duction model TADA [10], to generate gestural scores for speech
utterances. In this model, orthographic inputs are syllabified by
applying the max-onset algorithm to entries in the Carnegie Mel-
lon pronouncing dictionary. The syllabified inputs are parsed into
gestural regimes and intergestural coupling relations by gestural
dictionary and intergestural coupling principles, respectively. Us-
ing the gestural regimes and intergestural coupling, the interges-
tural timing model in TADA generates gestural scores including
intergestural timing information. These gestural scores are con-
verted to GPV sequences for training the GPV sequence models.

For word recognition (Figure 2), the task dynamic model of
inter-articulator speech coordination provides a canonical gestural
score for each vocabulary word, which is then used to build the
word-specific GPV N-gram model as a way to encode pronuncia-
tion.

In the context of gestural score recovery, GPV sequence recog-
nition with the word-independent GPV N-gram model outper-
forms a set of independent GPV classification tasks, by expressing
the relative likelihoods of different GPV sequences.

4. Speech Gesture Dataset
For the pilot experiments reported in this paper, we use a speech
dataset synthesized using TADA [10]. This dataset has all the
following: acoustics, tract variable time functions, gestures and
lexical representation. TADA generates articulatory and acous-
tic outputs from orthographical input. The gestural score is syn-
thesized in the way described in Section 3.2. The task-dynamic
model in TADA takes the gestural score and outputs the tract vari-

able and articulator time functions, which are further mapped to
the vocal tract area function (sampled at 200 Hz), and eventually
speech acoustics. The dataset contains the same 416 words as in
the Wisconsin articulatory database [14] for collaboration reasons.

As mentioned earlier, this work takes tract variable time func-
tions as observations. The synthesized data is used in this pilot ex-
periment to illustrate the concept, and will be used in future work
to bootstrap the same models for real speech data.

5. Experiments
5.1. Gestural pattern vectors
Similar to our earlier work [9], we sample the above dataset at
200Hz and obtain the true GPV for each frame, according to the
instantaneous activations in the gestural scores. To define a set
of frequent GPVs, we randomly split the dataset into three folds
and adopt only those GPVs that appear at least 20 times in any
two folds. This results in 145 distinctive GPVs, plus a special
“unknown” GPV, which accounts for less than 10% of the data
that do not correspond to the frequent GPVs.

5.2. Experiment setup
The dataset is randomly split into a training set of 277 words and
a testing set of 139 words, without word identity overlapping.

The inputs O to the ANN are values of the eight tract variable
time functions over a local time window of 15 frames, normalized
by the mean and standard deviation within each tract variable in the
training and test sets respectively. The ANN has 81 hidden nodes
and PCA reduces the dimensionality of the transformed features
from 146 to 80.

The first experiment is to recover the gestural activation, i.e.,
the discretized gestural scores. The ANN-GMM tandem models
for GPVs and a word-independent GPV sequence bigram model
are trained using the training set. These models are used by a
Viterbi algorithm as discussed in Section 3. The same experiment
is repeated with a uniform ergodic GPV sequence model, in which
any GPV can follow any GPV with uniform probability. That is
equivalent to classifying each individual GPV independently. The
performance of the gestural activation recovery is measured by
comparing the recovered GPV sequence with the “canonical” GPV
sequence. In particular, we calculate the frame-level F-score for
the discretized dynamic parameters used to define the GPVs. Note
that only activations in the 145 frequent GPVs are considered.

Figure 3: Recovered gestural score for the word “but”. (In this ex-
ample of the recovered gestural score, deviations from the ground
truth include insertion of two nonexistent short gesture activations
and shift of some onset/offset times.)

The second experiment is to classify the 139 words in the test
set, which don’t overlap with the 277 words in the training set.
Word-specific GPV sequence bigram models are interpolated with
the word-independent GPV sequence bigram model with different
interpolation weights. To reduce the computational cost of Viterbi



decoding using 139 different GPV sequence bigram models, we
first generate GPV lattices with two tokens in each step using the
word-independent GPV sequence bigram model, and then use dif-
ferent word-specific models to rescore the lattices and extract the
best paths with corresponding joint likelihood scores.

5.3. Experiment results
In Figure 3, we present an example of the truth gestural score and
the recovered gestural score. Both gestural scores are approxi-
mated by GPV sequences. A couple of the truth GPVs are not
among the frequent GPVs, therefore assigned to the special “un-
known” type.

Table 1: F-score (%) of recovered discretized gestural activation
(“Targ”: constriction targets; “Stif”: constriction stiffness).

Sequence Model Uniform ergodic GPV bigram
Targ&Stif 76.38 81.24

Targ 73.51 79.07
Stif 80.79 84.50

Targ

PRO 78.03 84.83
LA 69.44 77.28

TBCL 78.56 82.90
TBCD 83.16 86.01
VEL 64.79 75.21
GLO 62.80 72.34
TTCL 64.14 69.14
TTCD 63.05 68.44

Stif

PRO 78.46 85.24
LA 69.99 77.36

TBCL 83.41 85.90
TBCD 83.43 85.91

Table 1 presents the F-score of the recovered discretized dy-
namic parameters, i.e., constriction targets and stiffness, that are
used to define the GPVs. The word-independent bigram GPV se-
quence model outperforms the uniform ergodic sequence model,
i.e. independent classification of each GPV in a sequence.

Table 2 presents the word classification accuracy as a function
of the N-gram interpolation ratio (the ration between contributions
of word-specific and word-independent models). Setting the in-
terpolation ratio to 3:7 yields the best performance. This demon-
strates that the word-independent model provides helpful general
sequence information about GPVs that is not present in the word-
specific training models. As expected, when the ratio grows too
high, e.g., to 7:3, the resulting model loses its ability to discrimi-
nate between different words.

Table 2: Word classification accuracy(%) with varying interpola-
tion ratio when building the word-specific GPV sequence models.

Interpolation 1:49 3:7 1:1 7:3
Accuracy 84.17 86.33 85.61 48.92

6. Conclusion & Discussion
We propose a framework leveraging articulatory phonology for
speech recognition. Given a speech observation, recognizing the
sequence of “gestural pattern vectors” recovers the ensemble of
gestural activations. Word classification is achieved using an N-
gram model of the ensemble of gestural activations. For each word
in the vocabulary, a task dynamic model of inter-articulator speech
coordination generates a canonical gestural score, used for training
word-specific GPV sequence models. These models and an ANN-
GMM tandem model for GPVs are used in a Bayesian speech rec-
ognizer. A pilot experiment is carried out on synthesized data

from one speaker. Given the tract variable time functions, about
80% of the gestures, i.e., the discretized dynamic parameters in
the instantaneous gestural activations, are correctly recovered, and
word classification accuracy is over 85% for a vocabulary of 139
words not seen in the training data. These results suggest that GPV
sequences might be a viable alternative to phone sequences for
speech recognition.

Speech gestures, though represented as GPV sequences, are
unlike the sequence-of-phones model used in most speech rec-
ognizers. The recovered ensemble of gestures is a phonological
and phonetic representation distinctive to the content of speech, as
the onset and offset times for individual gestural activations natu-
rally encode co-articulation and reduction. Possible improvement
over the presented N-gram GPV sequence model could result from
collecting statistics separately for subgroups of the tract variables.
Deng’s lab explored multiple ways to use overlapping articulatory
features as sub-word units [4] and to predict spreading of the over-
lapping features [15]. It would be interesting to see how similar
approaches work for matching ensembles of gestures.

Our future work also includes combining this work with recent
work by our collaborater [12], and applying the presented frame-
work to real speech data, which will in turn enable more sophisti-
cated GPV sequence models.
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