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Arabic Language

= Largest still living Semitic language
= 250+ million native speakers

Arabic
Formal Dialectal
= Modern Standard Arabic (MSA) = Used in everyday life
= Standardized = Not standardized (mainly spoken)
= Alot of ASR and MT research = Many different dialects
= Not used in everyday life = Very few ASR and MT research

Significant differences between MSA and Dialectal Arabic
» Considered as completely different languages
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MSA Versus Dialectal Arabic

= Let’s have Egyptian Colloquial Arabic (ECA) as a typical Arabic dialect

= Phonological

— [t/, Is/ in ECA instead of /T/ in MSA
e.g. /tala:tah/ (three) in ECA versus /Tala:Tah/ in MSA

= Lexical
— t'ArAbE:zA/ (table) in ECA versus /t‘awila/ in MSA

= Syntactic
— SVO in ECA versus VSO in MSA

Challenges and techniques for dialectal Arabic ASR and MT | Mohamed Elmahdy | Qatar | Doha | Nov. 21, 2011



Page 4 Introduction | Approaches | Experiments and results | Conclusions

Automatic Speech Recognition

= High level diagram for a state-of-the-art ASR system

VQI =argmax P(O |W)P(W)
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For dialectal Arabic, sparse and low quality corpora are avallable
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Statistical Machine Translation

= High level diagram for a SMT system

E =argmaxP(A|E)P(E)

E<English
Arabic s| Decoder > English
sentence sentence
A E
Translation Language
Model Model
P(A[E) P(E)

Large parallel corpora are required
For dialectal Arabic, parallel corpora are not available
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Objectives

= ASR and MT for dialectal Arabic where little data exists

= To benefit from existing MSA speech data to improve dialectal Arabic ASR
and MT

= Ultimate goal “Speech-to-text MT” for dialectal Arabic
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Outline

= |Introduction
= Approaches
= Experiments and results

= Conclusions and future directions
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Proposed Approaches for Dialectal Arabic ASR

Phonemic acoustic modeling
— Dialectal speech data where phonetic transcription is available

Graphemic acoustic modeling

Unsupervised acoustic modeling

Arabic Chat Alphabet-based acoustic modeling
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Phonemic Cross-Lingual Acoustic Modeling

» Benefit from existing large MSA speech corpora

=  Assumptions:
— MSA is always a 2" language for any Arabic speaker

— Large amount of MSA speech data (large number of speakers) implicitly
cover all the acoustic features of the different Arabic dialects

=  Approach:
— Train an acoustic model using a large amount of MSA speech data

— Adaptation of the MSA acoustic models with a little amount of dialectal
speech data

Challenges and techniques for dialectal Arabic ASR and MT | Mohamed Elmahdy | Qatar | Doha | Nov. 21, 2011



Page 10 Introduction | Approaches | Experiments and results | Conclusions

Phonemic Cross-Lingual Acoustic Modeling (cont.)

= State-of-the-art AM adaptation techniques include:
— Maximum Likelihood Linear Regression (MLLR)

D,z =AD+Db

— Maximum A-Posteriori (MAP)
D,,» =argmax P(O | ®)P(D)
)]

» Requirement: adaptation data and the AM have to share the same
language and phoneme set

= Egyptian Colloguial Arabic (ECA) is chosen as a typical dialect

= INITIALLY: MSA and ECA do not share the same phoneme inventory

. —> | Acoustic model adaptation is not possible
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Phonemic Cross-Lingual Acoustic Modeling (cont.)

= SOLUTION: Phoneme sets normalization
— AM adaptation is possible

= Phoneme sets normalization
— Several phone mapping rules are applied

— Map ECA phonemes to their origins in MSA l
(even if they are acoustically different) Normalization
phone
& mapping rules
ECA /ol Igl hI  lel il ol /u/ I .

N e

MSA /vl ldz/ H il R/

(Carrbt) 9l IAI 1zl [A] Il —— [dZ] [al [z] [al Ir/
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Phonemic Cross-Lingual Acoustic Modeling (cont.)

Block diagram for the proposed approach
The adapted ECA AM is evaluated against the ECA baseline AM

— ECA
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Proposed Approaches for Dialectal Arabic ASR

Phonemic acoustic modeling
— Dialectal speech data where phonetic transcription is available

Graphemic acoustic modeling
— Phonetic transcription is not possible/difficult
— Short vowels are missing
— Phonetic transcription is approximated to be word letters

Unsupervised acoustic modeling
— Transcriptions are not available at all
— Dialectal speech was automatically transcribed using a MSA model

Arabic Chat Alphabet-based acoustic modeling
— Latin letters are used instead of Arabic ones
— Include short vowels that are missing in traditional Arabic orthography
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Outline

= |Introduction
= Approaches
= Experiments and results

= Conclusions
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Phonemic Cross-Lingual Adaptation Results

= ECA corpus: = Word Error Rate (WER)
—  65% for training/adaptation
— 0 [
35% for testing WER = Sub + Ins + Del
30.00
25.00
20.00 m ECA baseline
S 15.00 = MSA only
o MSA+ECA data pooling
W 10.00 :
= m MSA+ECA adaptation
5.00
0.00 41.8%
ECA Phonemic AM o

Relative reduction in WER
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Effect of MSA Speech Data Amount

= Varying the amount of MSA speech data
= Effect on phonemic cross-lingual adaptation
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Conclusions and Future Directions

= Conclusions

Problems in ASR and MT for dialectal Arabic

Cross-lingual acoustic modeling for dialectal Arabic ASR

Improvements are observed in both phonemic and graphemic modeling
Consistent reduction in WER by adding more MSA data

Ll

= Future directions
— Data collection (a focus is placed on the Qatari dialect)
— Extension to all the Arabic dialects
— Dialectal Arabic MT and LM
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Thank you for your attention
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