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 Largest still living Semitic language 

 250+ million native speakers 

 

Arabic 

Formal Dialectal 

 Modern Standard Arabic (MSA) 

 Standardized 

 A lot of ASR and MT research 

 Not used in everyday life 

 

 

 

 Used in everyday life 

 Not standardized (mainly spoken) 

 Many different dialects 

 Very few ASR and MT research 

 

 

 

 

Significant differences between MSA and Dialectal Arabic 

 Considered as completely different languages 

 

 

Introduction | Approaches | Experiments and results | Conclusions 

Arabic Language 
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MSA Versus Dialectal Arabic 

 Let‟s have Egyptian Colloquial Arabic (ECA) as a typical Arabic dialect 

 

 Phonological 

 /t/, /s/ in ECA instead of /T/ in MSA 
e.g. /tala:tah/ (three) in ECA versus /Tala:Tah/ in MSA 

 

 Lexical 

 /t„ArAbE:zA/ (table) in ECA versus /t„awila/ in MSA 

 

 

 Syntactic 

 SVO in ECA versus VSO in MSA 

 

Introduction | Approaches | Experiments and results | Conclusions 
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Automatic Speech Recognition 

 High level diagram for a state-of-the-art ASR system 
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For dialectal Arabic, sparse and low quality corpora are available 
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Statistical Machine Translation 

 High level diagram for a SMT system 
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Large parallel corpora are required 

For dialectal Arabic, parallel corpora are not available 
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Objectives 

 ASR and MT for dialectal Arabic where little data exists 

 

 To benefit from existing MSA speech data to improve dialectal Arabic ASR 

and MT 

 

 Ultimate goal “Speech-to-text MT” for dialectal Arabic 
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Outline 
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 Experiments and results  

 

 Conclusions and future directions 
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 Proposed Approaches for Dialectal Arabic ASR 

 Phonemic acoustic modeling 

→ Dialectal speech data where phonetic transcription is available 

 

 Graphemic acoustic modeling 

 

 

 Unsupervised acoustic modeling 

 

 

 Arabic Chat Alphabet-based acoustic modeling 
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Phonemic Cross-Lingual Acoustic Modeling 

 Benefit from existing large MSA speech corpora 

 

 Assumptions: 

 MSA is always a 2nd language for any Arabic speaker 

 Large amount of MSA speech data (large number of speakers) implicitly 
cover all the acoustic features of the different Arabic dialects 

 
 Approach:  

 Train an acoustic model using a large amount of MSA speech data 

 Adaptation of the MSA acoustic models with a little amount of dialectal 
speech data 

 
 

Introduction | Approaches | Experiments and results | Conclusions 
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Phonemic Cross-Lingual Acoustic Modeling (cont.) 

 State-of-the-art AM adaptation techniques include: 

 Maximum Likelihood Linear Regression (MLLR) 

 

 

 

 Maximum A-Posteriori (MAP) 

 

 
 Requirement: adaptation data and the AM have to share the same 

language and phoneme set 

 

 Egyptian Colloquial Arabic (ECA) is chosen as a typical dialect 

 

 INITIALLY: MSA and ECA do not share the same phoneme inventory 

 

Introduction | Approaches | Experiments and results | Conclusions 
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Phonemic Cross-Lingual Acoustic Modeling (cont.) 

 SOLUTION: Phoneme sets normalization 

 AM adaptation is possible 

 

 Phoneme sets normalization 

 Several phone mapping rules are applied 

 Map ECA phonemes to their origins in MSA 

(even if they are acoustically different) 
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Phonemic Cross-Lingual Acoustic Modeling (cont.) 

 Block diagram for the proposed approach 

 The adapted ECA AM is evaluated against the ECA baseline AM 
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 Proposed Approaches for Dialectal Arabic ASR 

Introduction | Approaches | Experiments and results | Conclusions 

 Phonemic acoustic modeling 

→ Dialectal speech data where phonetic transcription is available 

 

 Graphemic acoustic modeling 

→ Phonetic transcription is not possible/difficult 

→ Short vowels are missing 

→ Phonetic transcription is approximated to be word letters 

 

 Unsupervised acoustic modeling 

→ Transcriptions are not available at all 

→ Dialectal speech was automatically transcribed using a MSA model 

 

 Arabic Chat Alphabet-based acoustic modeling 

→ Latin letters are used instead of Arabic ones 

→ Include short vowels that are missing in traditional Arabic orthography 
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Phonemic Cross-Lingual Adaptation Results 
 

 ECA corpus: 

→ 65% for training/adaptation 

→ 35% for testing 
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 Word Error Rate (WER) 
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Effect of MSA Speech Data Amount 

 Varying the amount of MSA speech data 

 Effect on phonemic cross-lingual adaptation 
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Consistent decrease in WER 
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Conclusions and Future Directions 

 Conclusions 

→ Problems in ASR and MT for dialectal Arabic 

→ Cross-lingual acoustic modeling for dialectal Arabic ASR 

→ Improvements are observed in both phonemic and graphemic modeling 

→ Consistent reduction in WER by adding more MSA data 

 

 Future directions 

→ Data collection (a focus is placed on the Qatari dialect) 

→ Extension to all the Arabic dialects 

→ Dialectal Arabic MT and LM 
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Thank you for your attention 
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