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ABSTRACT

The hidden Markov model (HMM) is widely popular as the de
facto tool for representing temporal data; in this paper, we add
to its utility in the sequence clustering domain – we describe
a novel approach that allows us to directly control purity in
HMM-based clustering algorithms. We show that encourag-
ing sparsity in the observation probabilities increases cluster
purity and derive an algorithm based on lp regularization; as
a corollary, we also provide a different and useful interpreta-
tion of the value of p in Renyi p-entropy. We test our method
on the problem of clustering non-speech audio events from
the BBC sound effects corpus. Experimental results confirm
that our approach does learn purer clusters, with (unweighted)
average purity as high as 0.88 – a considerable improvement
over both the baseline HMM (0.72) and k-means clustering
(0.69).

Index Terms— hidden Markov model, sequence cluster-
ing, sparsity, cluster purity, Renyi entropy

1. INTRODUCTION

Unsupervised clustering – grouping the data into clusters – is
often a first step in the organization of unlabeled data, with
important speech applications such as speaker diarization [1,
2] and speaker adaptation [3], to name a few. Clustering al-
gorithms are useful if the resulting clusters predict the labels
that will eventually be assigned. Performance metrics such as
cluster purity, entropy, and accuracy attempt to quantify the
usefulness of a given algorithm [4]. While many methods
(e.g. k-means and spectral clustering) are known to be ef-
fective for producing good clusters, they generally only work
well when the datapoints lie in some fixed length vector space
[4]. Clustering sequences is much more challenging.

Most popular sequence clustering methods tend to be ei-
ther model-based or distance-based [5, 6, 7, 8]. Model-based
approaches make the assumption that the sequences are gen-
erated from K different models, each of which represents a
cluster [3, 5]. Distance-based methods rely on computing
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a similarity/distance metric between the sequences [8, 9]; a
closely related approach is to extract relevant features and re-
duce the problem to that of clustering fixed length vectors
[7]. There is, however, significant overlap between the two
types of sequence clustering algorithms – a large subset of
distance-based methods use generative models for obtaining
better proximity measures [7, 8, 9]. In this paper, we focus
on generative models and in particular, the HMM.

The popularity of HMMs, especially for describing time-
varying signals, is unquestionable. Within the domain of se-
quence clustering, HMMs have been successfully used in both
model-based and distance-based approaches [5, 6, 7, 8, 9,
10], and are quite natural for speech and audio data [10, 11].
Although they allow us to recover structure from sequences
and represent observations of varying lengths, they typically
do not favor parsimony. We argue that especially for the prob-
lem of clustering, parsimony or sparsity in the observation
probabilities is essential.

In this paper, we show that sparsity in the observation
probabilities leads to purer clusters and present an algorithm
based on lp regularization for achieving it. The regulariza-
tion parameter (η) that determines the tradeoff between model
likelihood and lp prior, along with the value of p, allows us
to directly control cluster purity. We discuss how our ap-
proach is equivalent to minimizing the Renyi p-entropy for
HMMs and provide an intuitive and useful interpretation of p
in our framework. We present experimental results on clus-
tering non-speech audio events from the BBC sound effects
corpus.

1.1. Relation to Prior Work

Previous approaches to HMM-based clustering [3, 5, 6, 7,
8, 9, 10] do not explicitly consider cluster purity; we de-
scribe a general approach that directly maximizes purity in
most of these methods, and present experimental results on
an approach similar to [3, 5]. The authors in [12] use the
Dirichlet prior to achieve sparsity in HMMs for image classi-
fication. We use the lp prior, which has a clean and intuitive
relationship to Renyi p-entropy. Our work is also an exten-
sion of minimum entropy clustering [13, 14] to HMMs, and
allows us to go beyond the quadratic and Shannon measures



of entropy to more intuitive ones such as Renyi p-entropy with
0 < p < 1.

2. HMMS FOR CLUSTERING SEQUENCES

Efficient implementation, impressive results, and a natural
and intuitive interpretation justify the extensive use of the hid-
den Markov model (HMM) within speech, natural language
processing, and several other communities [11]. HMMs are
parameterized by λ = (π,A,B), where π is a distribution
over the states, A is the state transition matrix, and B is a
matrix (when the observation space is finite) where Bij rep-
resents the probability of emitting observation j given state i.
We would like to group a set of N sequences, O = {Oj}Nj=1,
into K clusters. In this paper, we assume that K is known; if
K is unknown, we can draw from a rich set of model selection
methods to estimate it [15].

HMM-based clustering algorithms make some assump-
tions about the relationship across the K HMMs, each of
which generates the samples that belong to its respective clus-
ter. For example, Smyth makes the following mixture model
assumption: fK(Oi) =

∑K
j=1 fj(O

i|λj)pj , where Oi is the
ith sequence, and λj is the set of model parameters for the jth

HMM fj(.) [5]. The idea in [5] is to construct a similarity
matrix, SNij = P (Oi|λj)i,j=1...N , by first training a separate
HMM on each of the N sequences. Given any such matrix S,
it is easy to group the sequences into K clusters using some
standard method such as spectral clustering [16]. Smyth then
proposes to trainK new HMMs (one for each cluster) with its
corresponding set of sequences [5]. The mixture model as-
sumption allows us to fuse the K HMMs into one big HMM
and train on all N sequences [5]. Mixed approaches do not
necessarily focus on learning an overall generative model; in-
stead, they use SN or more discriminative estimates of it to
directly partition the data into K clusters [7, 8, 9].

In applications such as ours, the data is not naturally
segmented into N different sequences – initialization as
described in [5, 7, 8, 9] is difficult. We therefore allow
transitions across the HMMs and train a single super-HMM
that automatically segments and clusters the data. A similar
model was used effectively in [3] for the problem of speaker
adaptation. In all of the approaches outlined and cited here,
HMMs are trained using the maximum likelihood criterion; in
the next section, we discuss why sparsity is essential and how
we can incorporate it into HMM-based clustering algorithms.

3. ENCOURAGING SPARSITY IN HMMS

Let us consider just one cluster and take purity to be the mea-
sure of its goodness. The purity of a cluster C is given by
purity(C) = 1

|C| maxi (|C|class=i), where |C|class=i de-
notes the number of items of class i in the cluster, and |C| is
the total size of the cluster. This definition requires us to have

access to ground truth labels. In some applications, however,
it is difficult to predefine a fixed number of classes and even
more difficult to assign labels to all of the datapoints. In such
cases, the majority class associated with any given cluster can
be reasonably defined to be the most frequently produced se-
quence of symbols, after deleting repetitions [1]. Cluster pu-
rity can then be defined as the fraction of tokens assigned to a
cluster that share the same symbol sequence.

We can maximize purity, as defined above, by minimizing
the total number of different sequences that belong to a par-
ticular cluster – a quantity that depends on the HMM param-
eters. We simplify our argument by making the assumption
that the state transition matrix is left-to-right; this structure
allows us to view the observation sequence as a set of sym-
bols emitted by the first state, followed by a set of symbols
emitted by the second state, and so on. It is then clear that
minimizing the number of symbols emitted by each state re-
duces the total number of possible observations generated by
the HMM. Encouraging sparsity in the observation probabil-
ities allows us to directly minimize the number of symbols
emitted by each state.

In the following subsection, we summarize maximum a
posteriori (MAP) estimation for HMMs. In subsection 3.2,
we present the lp norm, 0 < p < 1, as a suitable prior for
encouraging sparsity. In subsection 3.3, we relate the lp prior
to Renyi p-entropy and provide an interpretation of our work
in the minimum entropy clustering framework.

3.1. MAP Estimation to Encourage Sparsity

A popular approach for learning the HMM parameters is
Baum Welch estimation based on the expectation maximiza-
tion (EM) algorithm [17]. The idea is to iterate between
computing the expectation (the Q function) and maximizing
it. Q(λ, λ′) is given by

Q(λ, λ′) =
∑
qεS

logP (O, q|λ)P (O, q|λ′) (1)

where S is the space of all state sequences, O = {Ot}Tt=1 is
the observation sequence, and λ′ is the previous estimate of
the parameters. It is easy to see that Q(λ, λ′) can be writ-
ten as a sum of functions of the three types of parameters:
the initial distribution of states (π), the state transition ma-
trix (A), and the matrix of observation probabilities (B) [17].
We can independently optimize over each of the three sets of
parameters (at a given iteration). To incorporate prior knowl-
edge/constraints (sparsity or otherwise), we use maximum a
posteriori (MAP) estimation. Here, we present the update
equations for B with some general prior, g(B). Extension
to other sets of parameters (π and A) is straightforward, but
not necessary for our problem. We maximize

N∑
i=1

T∑
t=1

log bi(Ot)P (O, qt = i|λ′)− ηg(B) (2)



where bi(Ot) is the probability that the ith state emits the tth

observation in the sequence {Ot}Tt=1. By setting the gradient
to zero and satisfying the usual constraints that for each i,∑
j Bij = 1 and Bij ≥ 0, we get

Bij =
(
∑T
t=1 P (O, qt = i|λ′)1{Ot = j} − ηSij)+∑T

t=1 P (O, qt = i|λ′)− ηSij)+
(3)

where (x)+ = max(x, 0), Sij = Bij∇Bij
g(B), and 1{arg}

is an indicator function that is 1 if arg is true and 0 otherwise.
Equation (3) is a fixed point equation which can be shown

to converge to a local optimum whenever g(B) is convex
(making −g(B) concave). The overall function (likelihood
+ prior) can be shown to increase irrespective of how many
additional terms we introduce to the likelihood function, as
long as they satisfy Jensen’s inequality [18].

3.2. The Appropriate g(B)

Given a vector x in theN -dimensional euclidean space, ‖x‖q ,
the lq norm of x is given by ‖x‖q = (

∑N
i=1 x

q
i )

1
q . The l2

norm is the most commonly used metric for regularization
[15]. The intractable l0 norm and its relaxation, the l1 norm
(lasso) encourage sparsity [15]. We, however, cannot directly
use the l1 norm sinceB is a stochastic matrix – the entries are
non-negative and each row sums to 1; the l1 norm of each
row is also 1, thus l1regularization is meaningless. A few ap-
proaches to sparsifying probability vectors (or simplex) exist
[19, 20]; for example, the authors in [19] present a new con-
vex optimization problem that does not use l1. We, however,
use the lp norm because it can be easily integrated into the
Baum Welch algorithm and because of its relation to Renyi
entropy.

Intuitively, the lp norm for 0 < p < 1 also encourages
sparsity and its use is theoretically justified in [21]. We min-
imize the sum of the lp norm of each row of B. In this work,
g(B) = ‖B‖1,p =

∑
i (
∑
j B

p
ij)

1
p . When p < 1, g(B)

is not convex and convergence of Equation (3) is not guar-
anteed; however, our experiments demonstrate good conver-
gence properties in practice.

3.3. Entropy

Entropy is a measure very similar to cluster (im)purity. A low
entropy suggests that all samples within a cluster are “close”
to each other. Given a random variable X with probability
mass vector Q, Renyi p-entropy is defined to be

Hp(X) =
p

1− p
log(‖Q‖p)

It can be shown that limp→1Hp(X) is Shannon entropy [22];
owing to computational benefits, quadratic entropy (p = 2) is
also commonly used [13, 14, 22].

In this work, we sparsify B on a row-by-row basis by
minimizing the lp norm, which is equivalent to minimizing
the Renyi p-entropy up to changes in the regularization pa-
rameter η. This allows us to interpret the value of p in new
light – minimizing Renyi p-entropy for 0 < p < 1 directly
increases cluster purity. It is easy to show that for p ≤ r,
Hp(Q) ≥ Hr(Q) [22] and by minimizing the Renyi en-
tropy for p < 1 (encouraging cluster purity), we also mini-
mize an upper bound on the Shannon and quadratic measures
of entropy. The converse, unfortunately, is not true. Meth-
ods based on quadratic entropy do not necessarily learn purer
clusters. Entropy measures with p < 1 are therefore attractive
and should be favored whenever it is feasible to incorporate
them; in the case of HMMs, a simple modification to the EM
algorithm suffices.

4. EXPERIMENTS

We test our method on clustering non-speech audio events
from the BBC sound effects corpus [23]. The dataset con-
tains 48 files ranging from 15 seconds to 5 minutes in length.
The files consist of common events such as rain, waterfall,
gunshot, birds, dog, baby crying, etc. We assume that the
events can vary drastically in length; for example, a typical
gunshot is much shorter than a baby crying. We hypothesize
that there are 35 clusters uniformly distributed across 7 event
lengths, ranging from 3 states per HMM to 9 states per HMM.
In order to detect multiple events per file, we allow transitions
from the last state of one HMM to the first state of another and
we refer to the resulting HMM as super-HMM. Viterbi decod-
ing is used to segment each audio file into sequences, and to
assign each sequence to one of the 35 cluster HMMs. We dis-
cretize the observation space by computing 13 mel-frequency
cepstral coefficients (MFCCs) with a window of 250 ms and
an overlap of 100 ms over all 48 files, and group them into 70
clusters using the k-means algorithm. Each event can then be
approximated by a sequence of integers.

Figure 1 shows the observation probability matrices of the
super-HMM for two cases: no sparsity (top) and some spar-
sity encouraged (bottom). The exact choice of the parameters
(p = 0.4, η = 0.09) is arbitrary and simply illustrates that our
proposed algorithm indeed sparsifies the observation proba-
bilities.

Although we previously defined majority class to be the
most frequently produced sequence of symbols, we report re-
sults on the more realistic and practical situation in which
there are exactly 48 sound classes, each corresponding to a
particular file in the dataset. We report results on frame-wise
clustering of the data since it allows for a much easier com-
parison with k-means clustering. We use two measures of
average purity: unweighted and weighted.

If we partition the datasetD intoK clusters, {Cj}Kj=1, un-
weighted purity is Punweighted = 1

K

∑K
j=1 purity(Cj) and



Fig. 1. Observation matrices Bij (displayed as images with
i = row index and j = column index) for η = 0 (top) and
p = 0.4, η = 0.09 (bottom)
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weighted purity is Pweighted =
∑K
j=1

|Cj |
|D| purity(Cj). A

high value of Punweighted implies that most of the individual
clusters are very pure and only a few are impure; Pweighted,
however, also takes into account the number of samples in
each cluster – it acts as a check against trivial solutions such
as one in which K − 1 clusters contain one sample each and
the Kth cluster contains everything else in D.

Figure 2 shows the dependence of Punweighted on the
regularization parameter η (top) and on p (bottom). It sup-
ports our claim (and intuition) that sparsifying the observation
probabilities within each HMM purifies the cluster and on av-
erage, leads to many more pure clusters. The best values of η
(0.05) and p (0.3) indicate that B is neither too sparse nor too
dense. It is intuitively clear that when the observation matrix
is dense, clusters are bound to be less pure; but why does a
little more sparsity lead to relatively less pure clusters? The
parameters η and p explicitly control some tradeoff between
likelihood and sparsity and in extreme situations, the model is
heavily constrained and learning becomes no more than just
randomly picking a few (sparse) observations for each state.

Table 1 contains the best results for all three methods and
the two notions of average purity. The values of (p, η) that
maximize Punweighted and Pweighted are (0.3, 0.044) and
(0.3, 0.009), respectively, which is in line with our intuition –
as discussed above, the observation matrix cannot be arbitrar-
ily sparse when trying to maximize Pweighted. We see that
in both cases, sparse HMMs do significantly better than the
baseline HMM and k-means. A considerably higher value of

Fig. 2. Average (unweighted) purity as a function of η with
p = 0.4 (top) and as a function of p with the best η for each p
(bottom)
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Pweighted (0.75) especially indicates that when the parame-
ters are chosen appropriately, sparse HMMs do not just focus
on a handful of samples and dump the rest into highly impure
“garbage” clusters; sparsity is indeed an effective tool for
learning purer clusters.

Table 1. Purity results
Method Punweighted Pweighted

k-means clustering 0.69 0.66
HMM 0.72 0.57

Sparse HMM 0.88 0.75

5. CONCLUSIONS

We have shown that lp-regularized Baum Welch algorithm
can be used to learn clusters that are considerably more pure
than those obtained by standard methods such as the baseline
HMM or k-means clustering. Although we restrict our ex-
periments to discrete HMMs in a generative framework, our
approach can be extended to more general cases. Methods
that use HMM as a tool for learning good distance metrics
can also benefit from our algorithm; intuitively, sparse obser-
vation probabilities must lead to more discriminative (sparse)
similarity matrices and naturally, to purer clusters. Our inter-
pretation of Renyi p-entropy also provides for an extension
to more general HMMs; to maximize purity, we can directly
minimize the Renyi p-entropy, 0 < p < 1, of each state.
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