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ABSTRACT 

This thesis introduces and discusses a new methodology for measuring the variation 

between linguistic varieties. I compare five Arabic varieties ï Modern Standard Arabic MSA, 

Gulf Arabic GA, Levantine Arabic LA, Egyptian Arabic EA, and Moroccan Arabic MA ï 

considering both lexical and pronunciation variation. I introduce the idea of measuring the 

amount of linguistic variation asymmetrically; the amount of linguistics variation between a 

speaker of variety A and a hearer of variety B is not necessarily equal to the amount of linguistic 

variation between a speaker of variety B and a hearer of variety A. I propose a new 

mathematically based computational representation of sound that enables the incorporation of 

phonetic features and articulatory gestures in measuring the amount of pronunciation variation. I 

also implement an optimization technique to assign weights and parameters to the phonetic 

features and articulatory gestures for the proposed representation of sound. The developed 

methodology, tools and techniques lead to a better understanding of the structure of language and 

carry implications to both theoretical linguistics and applied work in natural language processing 

NLP, it both provides a computational technique to assess the plausibility of defining the 

components of sound and opens a new venue to the possibility of utilizing a representation of 

sound that is phonetically motivated and computationally applicable to solve NLP problems. 

This research could potentially yield insights into the issues of mutual intelligibility and dialect 

identification between Arabic varieties. 

Measuring lexical and pronunciation variation is based on native speaker elicitations of 

the Swadesh list for the local varieties of Arabic, MSA is represented by translations from two 

dictionaries. The data collection procedure allows the participants to provide more than one 

translation. I also provide a context sentence for all lexical items to rule out cases of ambiguity. 
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The amount of lexical variation is measured at two levels of representation, the word level and 

the phonemic level. At the word level, the amount of linguistic variation is based on whether the 

words are derived from the same linguistic origin. The phonemic level looks at more details by 

allowing the IPA transcription of words of the Swadesh list to play a role in measuring the 

lexical variation. The amount of pronunciation variation is measured at three levels. The first and 

most abstract level is the phonemic level. The second incorporates the mathematical 

representation of sound; which encodes phonetic features and articulatory gestures. The third 

allows the vowels to be represented non-categorically based on the values of the first and second 

formant frequencies, MSA is not included at this level. 

The results of the measures of linguistic variation developed in this study confirm two 

observations about the communication between speakers of the Arabic varieties and provide an 

answer for the frequently asked question about the closeness of the Arabic varieties to each 

other. The first observation is that MA speakers are more distant to the other local varieties than 

the other varieties among themselves, which relates to the geographical distances between those 

varieties. Second, the amount of linguistic variation between EA speakers and hearers from other 

local varieties is less than the amount of linguistic variation between EA hearers and 

corresponding speakers from the local varieties. As for the closeness of the local varieties to 

MSA, GA seems to be the closest based on most variation metrics, followed by LA and EA, and 

MA is the farthest. Also, EA seems to be closer to MA than both LA and GA. Moreover, most 

variation metrics situates EA speakers closer to LA hearers than GA hearers. On the other hand, 

GA speakers are closer to LA hearers than EA hearers. Finally, the last measure of pronunciation 

variation situates LA speakers closer GA hearers than EA hearers. 

  

Comment [M1]: The second finding mirrors a 
pattern of mutual intelligibility we observe in the 

communication of Egyptian speakers with other 
speakers; the Egyptian speakers are understood by 

most speakers of other local varieties better than they 

understand them. Which lead speakers of other 
varieties to accommodate for Egyptian speakers. 
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CHAPTER 1 

INTRODUCTION  AND OVERVIEW  

 

Measures of linguistic variation, also called linguistic distance, is one of the prominent 

topics in the growing field of dialectometry, which is concerned with quantifying linguistic 

differences and similarities and, often, relates it to geographical distances between the areas 

where the relevant languages/varieties are spoken (Nerbonne and Kretzschmar 2003). In this 

thesis, I report on a set of computational measures of linguistic variation that quantifies the 

lexical and pronunciation variation between five Arabic varieties: Modern Standard Arabic 

MSA, Gulf Arabic GA, Levantine Arabic LA, Egyptian Arabic EA and Moroccan Arabic MA. 

The drive to computationally study linguistic variation is partly due to the extensive typological 

literature and the increasing number of corpora from different languages, which makes this type 

of research possible. Dialectometry has the potential to enrich the debates in a variety of fields 

such as theoretical linguistics and its focus on microvariation and its extents and limits as well as 

the related issues it raises about the cognitive aspects of language, in addition to anthropology, 

sociology and history, among many others. 

This research provides empirical evidence regarding the amount of linguistic variation 

between the Arabic varieties under consideration. Hence, it provides an answer for the frequently 

asked question about the closeness of the local varieties to MSA. Moreover, it provides empirical 

evidence based on computational techniques for two observations about the linguistic 

communication between speakers of the local Arabic varieties. The first observation is that MA 

is more distant to the other local varieties of Arabic considered in this study than the other 

Comment [M2]: What is dialectometry. And 
brief intro. 
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varieties among themselves; Geographically, MA is also more distant. The second observation is 

that, in most cases, Egyptian speakers are understood by other varieties better than they 

understand them. It is important to note that this observation may be due to factors related to 

exposure where the Egyptian media is popular and watched in many other countries. Also, it may 

be due to factors related to the linguistic competence of the speakers in both sides. Obviously, 

the former might have effect on the latter, for example, exposure might result with lexical items 

to be borrowed from one variety to the other, which become part of the linguistic competence of 

the speakers of both varieties. This research provides evidence about the amount of linguistic 

variation between the varieties as they are currently spoken. The questions about the reasons that 

might affect the amount of variation, such as exposure, are outside the scope of this research. 

The term linguistic distance has been extensively used in the field of dialectometry to 

express the amount of linguistic variation between varieties. However, this term is problematic 

as ódistanceô implies a single measure calculated between two objects. As shown by the use of 

the term mutual intelligibility, the measure of intelligibility is inherently asymmetric, meaning 

that speakers of some variety (A) may understand speakers of another variety (B) better than 

speakers of variety (B) understand speakers of variety (A). In this thesis, I develop variation 

metrics that are asymmetric. Instead of the term linguistic distance, I am using the terms measure 

of linguistic variation and linguistic variation metric; they are used interchangeably in this thesis. 

Séguy was among the first researchers in the field of dialectometry. In his 1973 study, he 

used a linguistic Atlas that contained variables from five linguistic subsystems or components 

that represent the languages under consideration. The linguistic subsystems were lexical 

(represented by 170 variables), pronunciation (67), phonetic/phonological (75), morphological 

(45), and syntactic (68). For each subsystem or component, Séguy calculated the percentage of 

Comment [M3]: The asymmetry of linguistic 
variation. Link with the previous paragraph that a 

distance matrix allows for asymmetry while an Atlas 
would is not. 

Comment [M4]: Review of Séguyôs study. 
Which is considered the seminal work in 

dialectometry. 
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disagreements between each neighboring pair of sites for each variable in the five subsystems. 

Then the linguistic distance is calculated as the average of the distances between the five 

subsystems (Heeringa 2004). 

In this research, I study each linguistic subsystem independently when measuring 

linguistic variation, which in our view is the most efficient, informative and feasible way to 

measure linguistic variation. For the present purposes, the scope of the investigation is limited to 

two linguistic subsystems: lexical and pronunciation. Other subsystems, such as morphology, 

morphosyntax and semantics, are to be studied in the future. It is important to explore each 

linguistic subsystem independently because the amount of linguistic variation in each subsystem 

might have different implications. For example, from a Natural Language Processing (NLP) 

point of view, greater variation in the lexical subsystem indicates more differences in a 

dictionary to be used in an automatic translation system. A smaller variation in pronunciation 

might imply that an automatic speech recognition system trained on one dialect is usable, to 

some extent, for the other dialect. Similarly, morphosyntactic and morphological distance should 

reflect the amount of adaptations or changes required to make a morphological analyzer or 

stemmer usable for the other variety. 

The question of measuring linguistic variation has been approached from different 

perspectives. Some studies have looked at the distance between languages in an effort to 

reconstruct the languages family trees (Gray and Jordan 2000; Gray and Atkinson 2003; Serva 

and Petroni 2008, among others). Others have looked at the distance between closely related 

languages, or dialects of the same language, in an attempt to identify the subgrouping of those 

languages or dialects (Elsie 1986; Ebobisse 1989; Babitch and Lebrun 1989; Kessler 1995; 

Heeringa 2004; Valls et al. 2011, among others). Yet another stream of research has employed 

Comment [M5]: Looking at each subsystem 
independently. Lexical and pronunciation subsystem. 

And justification of the separation. 

Comment [M6]: Why to quantify linguistic 
variation (different perspectives).  
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measures of linguistic variation in computational tasks such as the automatic identification of 

cognate words (Kondrak and Sherif 2006; Kondrak 2009). Gooskens (2007) tested the 

correlation between different measures of linguistic variation and mutual intelligibility between 

Scandinavian languages to show that the amount of phonetic variation can predict the degree of 

mutual intelligibility better than the amount of lexical variation. Within the area of Arabic 

linguistics, the most relevant stream of research has been concerned with the problem of dialect 

identification (Biadsy et al. 2009; Zaidan and Callison-Burch 2012; Elfardy and Diab 2013). 

The motivation for this study is to enhance our understanding of linguistic variation and 

thereby enhance our understanding of human language as a whole. This is based on the idea that 

quantifying the amount of variation between two entities enforces a better understanding of the 

nature of the entities under consideration. 

The goals of this study are both conceptual and empirical. Conceptually, I develop a 

representation of sound that captures phonetic similarity in a mathematically simple and 

computationally feasible way. This representation of sound is based on phonetic features and 

articulatory gestures; it is an attempt to computationally represent the sound based on its basic 

components. It is also equipped with the ability to represent sound categorically and non-

categorically, this representation of sound is referred to as the mathematical representation of 

sound. The second conceptual goal is to provide a non-subjective way to assign weights to 

phonetic features. The first two conceptual goals are crucial to answer the question of how to 

computationally measure pronunciation variation. Which in turn, leads to models and techniques 

that could potentially help solve problems related to similarity in pronunciation raised in various 

NLP tasks. The third conceptual goal is to introduce the idea of measuring linguistic variation 

asymmetrically. This is important to solve the puzzle of asymmetric mutual intelligibility. 

Comment [M7]: The motivation of the study. 
Having a better understanding of the components of 

sound 

Comment [M8]: The goals of this study 

Comment [M9]: First conceptual goal 

Comment [M10]: Second conceptual goal 

Comment [M11]: Third conceptual goal 
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Empirically, I develop a set of techniques to measure the amount of lexical and pronunciation 

variation between closely related (and possibly mutually intelligible) languages. I incorporate 

data from four local varieties of Arabic and from MSA to measure the lexical and pronunciation 

variation among them. I provide a new approach to computationally handle pronunciation 

variation based on a mathematical representation of sound. I also consider which features should 

be included in the representation of a given sound, and the salience of each of these features. I 

measure the amount of linguistic variation between all pairs of Arabic varieties included in this 

study, which answers the frequently asked question about the closeness ï here, in terms of 

lexical and pronunciation variation ï of the local varieties to MSA. It is important to keep in 

mind that I focus on the amount of variation between MSA speakers and hearers from the local 

varieties, which reflects the ability of the members of local varieties to comprehend MSA. The 

other direction of communication is not highlighted in the discussion because it relates to the 

ability of MSA native speakers to comprehend the local varieties; the existence of MSA native 

speakers is questionable and if exists their ability to comprehend the local varieties would not be 

of a high cultural and social importance. 

The primary guideline in making decisions related to the data analysis and the design of 

the data collection procedure is to mirror the degree of mutual intelligibility between two 

speakers when they are first encountered or after a limited exposure. It is important to note that 

the amount of linguistic variation that we are measuring is not the only factor that affects the 

degree of mutual intelligibility. Exposure is another factor or perhaps one of the most important 

factors that facilitate mutual intelligibility. Speakers from different dialects maybe exposed to 

each other and may develop some familiarity with each otherôs dialects. Even if someone is not 

exposed to some dialect he/she might be exposed to another dialect that has some features that 

Comment [M12]: Empirical goals: 
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exist in the first dialect. For example, a speaker of the dialect spoken in Cairo, Egypt, does not 

have gender agreement in verbs for third person plural verb subjects in his/her EA grammatical 

system. However, since he/she might be exposed to Standard Arabic, which has that feature, we 

do not expect to see significant intelligibility problems with respect to third person feminine 

plural agreement with speakers of some GA dialects which have that grammatical feature. 

The four local varieties are represented by elicitations of the words of the Swadesh list 

from two native speakers born and raised in a major city where the variety is spoken. MSA is 

represented by translations of the words of the Swadesh list from two dictionaries of MSA (see 

chapter 2). The lexical subsystem is investigated at two levels of representation, the word level, 

and the phonemic level. At the word level, the amount of linguistic variation is based on whether 

the words have originated from the same linguistic origin. The phonemic level considers more 

details by measuring the lexical variation based on the similarity of the IPA transcription of 

words of the Swadesh list. The pronunciation subsystem is investigated at three levels. The first 

and most abstract level is the phonemic level. At this level, we measure the amount of 

pronunciation variation based on the similarity of the IPA transcription of cognate words in the 

Swadesh list. The second level incorporates the mathematical representation of sound which 

takes into account the phonetic features and articulatory gestures in measuring pronunciation 

variation. The third level allows the vowels to be represented non-categorically based on the 

values of the first and second formant frequencies. MSA is not included in the third level due to 

the lack of acoustic data. 

All measures that took into account MSA have situated MA as the farthest to MSA. The 

lexical measure at the word level resulted with LA as the closest to MSA, followed by GA then 

EA. The remaining three measures have situated GA as the closest to MSA. Two of them had 
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LA in the second place. As for the variation between the local varieties, the closest to MA is EA 

followed by GA and LA. The variation metrics did not provide a significant distinction between 

the closeness of GA to MA and the closeness of LA to MA. All variation metrics showed that 

GA speakers are closer to LA hearers than EA hearers. The lexical measure at the phonemic 

level and the first two pronunciation measures showed that EA speakers are closer to LA hearers 

than GA hearers. On the other hand, the third measure of pronunciation variation showed that 

LA speakers are closer to GA hearers than EA hearers. See Chapter 6 for more discussion about 

the closeness of the Arabic varieties to each other.  

For many studies in dialectometry, the focus is categorizing different dialects into 

subgroups (Elsie 1986; Babitch and Lebrun 1989; Ebobisse 1989). The problem with this 

approach is that the focus often drifts to defining dialect boundaries, which is not the focus of the 

current research. Séguy (1973) introduced the idea of providing a distance matrix that replaced 

the method of counting the number of isoglosses between dialect sites and ruled out the problem 

of dialect subgrouping. In this project, I follow Séguy (1973) by providing results in a distance 

matrix as opposed to providing the results on a map. The distances reported by each metric are 

best interpreted relative to other results from the same metric, reported in the same table. 

The rest of this thesis is organized as follows. Chapter 2 discusses the data, the data 

collection procedure and the preparation of the data for the use of the measures of linguistic 

variation. Chapter 3 reports on the measure of lexical variation at the word level. Chapter 4 

describes measures of lexical and pronunciation variation at the phonemic level. Chapter 5 

discusses the mathematical representation of sound and respective methodology used in 

measuring pronunciation variation. The conclusions, limitations, and implications of this 

research and future directions are discussed in Chapter 6.  

Comment [M13]: Using a distance matrix rather 
than an Atlas. 
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CHAPTER 2 

PARTICIPANTS, DATA  SOURCES, AND DATA COLLECTION PROCEDURE  

 

This chapter covers all the steps required to prepare the data for measuring the lexical and 

pronunciation variation between the varieties of Arabic. The first section discusses the data 

sources used to elicit the words of the Swadesh list. Each local variety is represented by two 

male native speakers born and raised in a major city where the variety is spoken. MSA is 

represented by two modern dictionaries of Arabic. The second section reviews the Swadesh list 

and discusses its usability for the Arabic varieties where we found that some adaptations are 

required. For example, some meanings are clarified or restricted by context sentence. The third 

section touches the issue of allowing the participants to provide more than one translation for the 

items in the Swadesh list. The data collection procedure and tools developed to facilitate the data 

collection are discussed in the fourth section. The data segmentation and transcription are 

discussed in sections five and six respectively. Section seven reports on the algorithm I 

developed to predict landmarks at which the values of the formant frequencies are sampled. The 

last section discusses a non-categorical representation for vowels based on the values of the first 

and second formant frequencies. The remaining chapters in this thesis discuss the procedures and 

methods to measure the lexical and pronunciation variation between the varieties of Arabic based 

on the data sets prepared according to the methods described in this chapter. 
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2.1 Participants and MSA Data Sources 

Each spoken variety is represented by two male native speakers between the ages of 21 

and 32. All participants are required to have been born and raised in a major city where that 

variety is spoken; their parents must also speak the same dialect. For this study, we only consider 

male speakers in order to eliminate any possible effect of gender in the data. I tried as much as 

possible to have all participants of similar socio-economic status from the middle class. More 

information about the participants is provided in table 2.1. 

 

Table 2.1: Summary of the participants 

Dialect ID City Social status Year of Birth 

EA EA01 Cairo, Egypt Middle, upper 1983 

EA EA02 Cairo, Egypt Middle 1982 
GA GA01 Dharan, Saudi Arabia Middle 1982 
GA GA02 Manamah, Bahrain Middle 1984 

LA LA01 Salt, Jordan Middle 1984 
LA LA02 Tripoli, Lebanon Middle, upper 1992 
MA MA01 Meknes, Morocco Middle 1982 

MA MA02 Rabat, Morocco Middle 1982 
 

MSA is represented by two modern dictionaries, namely Almawrid (Baóalbaki and 

Baóalbaki 1999) and Elias Modern Dictionary (Elias and Elias 1983). Because MSA is a 

standardized language, the lexical items from these dictionaries are considered an accurate 

representation of the language. One complication was that the dictionaries listed some dialectal 

forms such as ӛҢ:ӊ ówhatô from the Levantine dialect harash órubô from the Egyptian dialect. 

Therefore, these words are removed from the data set after consulting other modern and classical 

dictionaries of Standard Arabic (muxtaar ӛassiǩaaǩ, lisaan ӛalaӜarab, and Assiǩaaǩ fi Alluӈa). 
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Also, because the lexical items in the Swadesh list sometimes had multiple possible translations, 

I selected only the translations that matched the context assigned to the items (see Section 2.2). 

2.2 Swadesh list 

The Swadesh list is widely used in linguistic research. The list consists of 207 lexical 

items that contain different parts of speech including pronouns, nouns, adjectives, verbs, 

prepositions and others. The Swadesh list is provided in Appendix A including the translations 

from the Arabic varieties and the original English version. Some adaptations are introduced to 

the list to make it usable for Arabic varieties and to eliminate, as much as possible, the effect of 

the other linguistic subsystems on the lexical and pronunciation variation. These adaptations are 

achieved by introducing the word in a context sentence. To be consistent, all words are given 

context sentences even if the context is not necessary. The first and most frequent adaptation is 

to select a single verbal form with the same tense and person, gender, and number agreement for 

all verbs. This is necessary to ensure that the participants are not providing different inflections 

or tenses for the verbs. All verbs are elicited in the past tense with third-person masculine 

singular agreement, which has no prefixal or suffixal inflections and is the conventional form 

listed in Arabic dictionaries. This eliminates as much as possible the effect of the 

morphosyntactic subsystem. Likewise, the masculine form was selected for the two instances of 

the pronoun you (singular and plural) for consistency. In addition, nouns are elicited in an 

indefinite (unmarked) form and cliticized pronouns are removed. Moreover, word final vowels 

are not included for verbs, nouns, adjectives, or quantifiers, for which the vowel in most case 

indicate grammatical inflection rather than lexical information. Other lexical categories such as 

pronouns, demonstratives, question words, negation particles, prepositions, and conjunctions are 
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elicited with the word final vowel maintained because this does represent lexical information for 

these classes. 

The second adaptation is to provide a context sentence that disambiguate the meaning of 

some words in the Swadesh list. Although a context sentence is provided for each item, the 

disambiguation is necessary in three main situations for certain words. The first situation is 

syntactic where the translation of the item depends on the syntactic position of the word in the 

sentence. The negation particle not, appearing as item number 16 of the Swadesh list, can be 

translated in GA as maa to negate a verb and as muu or miӊ to negate a participial or an 

adjective.
1
 In such cases, it is important to provide all participants with a single context to ensure 

consistency. The second situation is based on lexical semantic factors where the translation of 

the word is highly dependent on the context. For example, adjectives can be translated differently 

when they modify different nouns. The adjective wide in English can be used in wide road and 

wide pants. The translation of wide pants in EA is bantaluun waaseӜ. While wide road could be 

translated as both ӊareӜ waaseӜ and ӊareӜ Ӝariid֙. To avoid the situation where the participants 

are translating the adjectives with different contexts in mind, an explicit context is provided. 

Likewise, a preposition may have more than one spatial or temporal meaning. For example, I am 

at home and I am at the door denote different spatial meanings; the first denotes that the entity 

referred by the subject of the preposition is inside the home, whereas the latter means that the 

entity referred by the subject is close to the door. The third situation is when a word has more 

than one meaning. For such cases, the context sentence ensures that all participants are 

translating the same word sense and avoids ambiguity. Examples from the Swadesh list include 

                                                 
1
 In some varieties of Gulf Arabic one can find miώ in addition to the traditional Gulf negatives maa, muu and mub. 

miώ is most likely a borrowing due to contact with varieties of Arabic, such as Egyptian,  where miώ is the typical 

negative particle. 
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the verb lie which means to rest on a flat surface or to speak falsely. The noun bark might refer 

to the covering of a tree or to the sound of a dog. Similarly, fat might refer to the white residue in 

meat or to an overweight person. I selected the word sense that goes in line with the data 

provided by earlier studies that have used the Swadesh list. 

In addition to the formerly mentioned adaptations, it was necessary to introduce some 

adaptations to a set of items in the Swadesh list. These adaptations are based on the researcherôs 

experience in working with participants from the spoken varieties. The translation of item 

number 40, that corresponds to wife, is elicited in the construct state form (the so-called Idhaafa). 

Some participants provided an exclusively formal (MSA) translation for the word when it is not 

in Idhaafa construction, so the word in Idhaafa is considered more natural. It was also 

problematic to elicit a translation for item number 46, corresponding to bird. The size of the bird 

plays distinctive role in the translation of the word, so the context sentence specified the size of 

the bird. The class of demonstratives (items 7-10) was given as a topic of the sentence, and the 

participants were asked to utter it while pointing to the intended object. The coordination item 

and (number 204 in the Swadesh list) was produced by the participants in many different ways, 

including different ending vowels. In many cases, the same participant provided more than one 

form. Examples of the pronunciations include: ӛu, wa, wu, wi, and u:. To resolve the issue of 

extensive optionality, I asked the participants to add an epenthetic glottal stop and pause before 

and after uttering the item. The context sentence for this item is: Ali ___ Saleh are friends. The 

direction was given as follows: say the first name then pause. Start the coordination element by 

starting with an ӛ sound if needed, then pause again after uttering the coordinating element. Then 

say the second name. The pauses are to enforce the pronunciation of the item as a word rather 

than a prefix. This strategy worked very well to eliminate the variations caused by different 
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optional pronunciations of the same item between the native speakers of the spoken varieties. 

However this caused a problem comparing these different pronunciations to MSA because the 

selected pronunciation of the same item is not possible in MSA, for which the standard form wa 

was used. 

 

2.3 Allowing Multiple Translations 

The words of the Swadesh list are elicited in two passes. In the first pass, participants are 

asked to translate the words from English to their variety of Arabic. In the second pass, 

participants are given the words in the other varieties, in addition to the English form. The 

researcher discusses with the participants the possibility of using one of those words or words 

with similar linguistic origin in their variety used in the same context. The purpose of the first 

round is to find the most natural translations that the participants would provide without seeing 

what other participants have provided. The purpose of the second round is to find any possible 

optionality where a cognate of a word in one of the other varieties is available in the participantôs 

variety with the same meaning. It is worth mentioning that some participants have said, in some 

cases, that the words they saw in the second round have reminded them with a more natural 

translation of the English word
2
. All words are provided in Appendix A. The words that the 

participants provided in the first round are tagged with ENG, abbreviation of ENGlish. The 

words elicited in the second round are tagged with VAR, abbreviation of other VARieties. This 

requirement complicates the data collection procedure because each participant must be aware of 

all the words provided by the other participants. If a participant adds a new set of words, then all 

                                                 
2
 An example is the translation of the word guts (Swadesh item 86) provided by the speaker GA01. After seeing the 

translation provided by the other speakers, he said that mas֙ArIn is a better translation that the word ӛamӜAӛ. 
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other participants have to be consulted about the newly added words. To simplify the process I 

anticipated what the participants would potentially provide by informally consulting native 

speakers from the varieties under consideration and by consulting an online resource.
3
 If a 

participant introduces a word that did not exist in the list of possible words, the new word was 

added to a list that I used to reinterview all previously recorded participants. 

2.4 Data collection tools 

The data collection procedure is designed to allow the participants to provide translations 

of the English word along with a context sentence before they are shown the words in the Arabic 

varieties. It is also possible to add to the list of words in the Arabic varieties as I elicit data from 

the participants. For each item in the Swadesh list, the participant is first given the word in 

English along with the context sentence. Then the researcher discusses possible translations in 

his variety. The participants are always reminded that they must only provide words that they 

produce in informal settings such as when talking to siblings and close friends from the same 

city. When the participant is ready, he is asked to repeat each translation that fits the context 

sentence three times. After that, the participant is given a set of possible translations in the 

Arabic varieties according to the preliminary data I collected about the other varieties and 

according to what the previous participants have provided. If a cognate of any of the words exists 

in his variety and would be used in daily life for the given context then the participant is asked to 

repeat each of these new possible words three times. In many cases, the participants would say 

that they understand the word and they might have heard it spoken by speakers from their city, 

but they do not feel that they would say it themselves. In such cases, the word is not considered. 

In the event the participant adds a new word that does not exist in the precompiled list of 

                                                 
3
 http://en.wiktionary.org/wiki/Appendix:Arabic_Swadesh_list 
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possible words in the Arabic varieties then the new word is added to the list of so the following 

participants are asked about it. Here it is important to keep track of any added items. After I 

recorded the data from all participants, I recompiled the list with including the newly introduced 

lexical items and ask each participant about the items other participants have introduced after 

their first session. 

The data collection is facilitated by BrowseHTMList, an application I developed to help 

manage the process of data collection. For phonetic analysis and manipulation of audio files, the 

Praat software is used (Boersma and Weenink 2012). This tool is an open source program used 

by the linguistic research community. The software is also used for the analysis of the recorded 

stimuli as discussed later in this chapter. The recordings took place in a sound-proof booth at the 

Phonetics and Phonology Lab at the University of Illinois at Urbana-Champaign using a Marantz 

digital recorder (Marantz PMD570) and an AKG c520 head-worn condenser microphone. The 

recordings were sampled at 48.0 kHz. 

 

2.4.1 BrowseHTMList  application 

BrowseHTMList is an application developed by the researcher using MS Visual C++ 

2005. Its main function is to load a list of HTML pages, each page is associated with an ID. The 

application allows a user to browse through the HTML pages in the order they are included in 

the list. An additional function of the application is to track browsing history times. This is done 

by starting a timer at the beginning of each session, and the application logs the starting and 

ending time for viewing each page relative to the timer that was started at the beginning of the 

session. The accuracy the timer is in the range of ±16 milliseconds according to Microsoft 
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MSDNÊ. The time log is used later to automatically segment the recording. Figure 2.1 shows a 

sample of the list given to BrowseHTMList. Figure 2.2 shows the list produced by the program 

as output that contains time stamps. 

Figure 2.1 Part of the list provided as input to the  BrowseHTMList application. The first column contains Swadesh 
list item ids, and the second column contains the HTML page file names 

 

  

Figure 2.2 Part of the list produced as output from the BrowseHTMList application. The first column contains 
Swadesh list item ids, the second and third columns contain the timestamps in milliseconds of browsing the page 

relative to the time of loading the list. 

 

BrowseHTMList application is designed and developed to be as generic as possible to 

benefit the research community running similar data collection sessions. To achieve this goal, it 

is made open source under a GNU license agreement
4
. Also, it is designed to be easy to 

customize. The most customizable feature is its ability to host HTML files. HTML provides 

extensive formatting that is application independent: the font can be changed, pictures can be 

added, tables can be inserted, and much more. Figure 2.3 shows a snapshot of the application 

with illustrations about the controls in the application.  

                                                 
4
 BrowseHTMList is downloadable at: https://browsehtmlist.codeplex.com/ 

no_content_intro_SWADESH_012  SWADESH_012_01_intro.html  

SWADESH_012_eng_utter_01  SWADESH_012_02_utter_1.html  

SWADESH_012_eng_utter_02  SWADESH_012_03_utter_2.html  

SWADESH_012_eng_utter_03  SWADESH_012_04_utter_3.html  

no_content_other_var_SWADESH_012  SWADESH_012_05_other_varieties.html  

SWADESH_012_var_utter_01  SWADESH_012_02_utter_1.html  

SWADESH_012_var_utter_02  SWADESH_012_03_utter_2.html  

SWADESH_012_var_utter_03  SWADESH_012_04_utter_3.html  

 

no_content_intro_SWADESH_012  998.406000  1006.986000  

SWADESH_012_eng_utter_01  1006.986000  1008.780000  

SWADESH_012_eng_utter_02  1008.780000  1011.027000  

SWADESH_012_eng_utter_03  1011.027000  1013.289000  

no_content_other_var_SWADESH_012  1013.289000  1056.423000  

SWADESH_012_var_utter_01  1056.423000  1059.231000  

SWADESH_012_var_utter_02  1059.231000  1064.410000  

SWADESH_012_var_utter_01  1064.410000  1069.090000  
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Figure 2.3 Snapshot of BrowseHTMList application when the participant is browsing the first item of the Swadesh 
list. The menu bar shows controls to move to the next page and to move the previous page. The status bar shows 

the number of items the participant is expected to browse. The content page shows the word in English, the 
context sentence, and a request to the participant to be prepared to record the translated word in the following 

pages 

 

 

 

A data collection session facilitated by BrowseHTMList would start by starting the sound 

recording device then loading the list of HTML pages to be browsed during the session. This list 

should be saved in a text file in the same folder where the HTML pages are located. The list is 

loading by the ñFile Ą Openò menu item, loading the list instantiates a timer that will be used to 

track the time, loads the first page in the list, and specifies the number of pages that will be 

browsed in the session in the status bar of the application along with a sequence number of the 

currently browsed page. After loading the list, I play a beep by the ñItem Ą SyncBeepò menu 

Comment [M14]: in this page I had questions 
about the participantôs background, what dialect they 
and their parents speak? The city they are from? And 

the socio economic status?. 
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item. This beep is used to segment the WAV file as discussed in section 2.4.2. Then the 

participant or the researcher browse through the list by clicking on the menu items ñNextò and 

ñPreviousò. It was found that the mouse clicks generate undesirable noise in the WAV signal. To 

avoid this noise, I added the functionality of accessing the menu items using keyboard shortcuts 

where the keyboard was found to generate less noise. The keyboard shortcuts are ñCtrl+Nò for 

ñNextò, and ñCtrl+Pò for ñPreviousò. To add more flexibility , I added three more menu items in 

addition the ñSyncBeepò menu item under the ñItemò menu item to allow the user to skip an 

item, redo an item, or mark an item as a bad item. These are accessed through ñItem Ą Skipò or 

ñCtrl+Sò, ñItem Ą Retryò or ñCtrl+Rò, and ñItem Ą MarkBadò or ñCtrl+Bò respectively. 

Skipping an item is useful in cases where the participant is not recording anything related to the 

HTML page he/she is viewing. In cases of a mistake or mispronunciation, the participant can 

mark the current item as bad which shows on the status bar of the application. Then, redo the 

recording of that item. There is 0.5 second delay added to the transition between HTML pages 

when the user moves to the next or previous pages. This delay is to enforce a pause by the 

participants especially in cases when they are asked to repeat the same word three times because 

they must wait for the next page to load before each utterance. The data collection session ends 

by playing another beep then stopping the recording device. The application generates a log file 

about the browsing session and saves it in the same folder that has HTML pages. See figure 2.2 

for a sample of the log file. 
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2.4.2 Synchronizing the timestamps and TextGrid boundaries 

The lab setting consists of two main systems. The first system records the participantôs 

voice. This system involves an acoustic controlled environment, a microphone and a sound 

recording device, to be referred to as the recording system. The second system is used to control 

the flow of the data collection. It presents instructions and stimulus items to the participant, and 

keeps track of the time it takes in each stimulus item, to be referred to as the flow system. The 

second system is facilitated by the BrowseHTMList application. 

The recording system generates audio recordings in a WAV file while the flow system 

generates Swadesh list item IDs and timestamps. Linking the timestamps provided by 

BrowseHTMList within the flow system to the WAV signal of the recording system requires 

synchronizing the two systems. The synchronization is achieved by having one system 

generating a signal that is detected by the other system at exactly the same moment. The signal is 

a sound generated by the flow system and recorded by the recording system. The sound signal is 

designed to be easy to detect in the WAV signal. It is a beep that the flow system plays within 

the BrowseHTMList application, this beep is referred as SyncBeep.
5
 As mentioned earlier, a 

menu item is added to the BrowseHTMList application to play the SyncBeep at the beginning of 

the recording session. Then a Praat script is used to synchronize the timestamps provided by the 

flow system with the WAV signal. The synchronization provided a perfectly aligned TextGrid in 

cases where the recording session is short. In long recording sessions where the flow system is 

operated by the personal laptop of the researcher
6
, there was a consistent trend where the 

beginning of the TextGrid is perfectly aligned while later interval boundaries are more shifted. 

                                                 
5
 The SyncBeep is created using http://www.linguistics.ucla.edu/faciliti/facilities/acoustic/create_waveforms.txt 

[Type ï square, duration ï 1 sec, sampling rate 16000, F0 450, amplitude 1, triangle skewness 50] 
6
 The researcherôs laptop is DellÉ Vostro 3500.  
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This consistent pattern seems to be due to inaccuracy of the time tracking hardware in that 

particular machine. The shift did not appear when the flow system was operated on another 

machine. To resolve the problem of misaligned TextGrids, I added the capability of the flow 

system to generate two SyncBeeps. The first SyncBeep at the beginning of the recording session 

and the second SyncBeep to be played towards the end of the recording session. The following 

equations show the method to calculate the timestamps to set the boundaries of the TextGrid 

segments based on the time the two SyncBeeps generated by the flow system and detected by the 

recording system.  

 

x: the input timestamp as indicated by the log generated by the BrowseHTMList 

application. 

b: the difference between the time logged for the first SyncBeep and the time the 

SyncBeep is actually located in the WAV file 

a: the time multiplication factor calculated based on the first and second SyncBeeps 

y: the output time to be used to mark the TextGrid boundaries. 

 

y = ax + b 

 

ὥ
ὛώὲὧὄὩὩὴς Ὥὲ ὸὬὩ ύὥὺ ίὭὫὲὥὰὛώὲὧὄὩὩὴρ Ὥὲ ὸὬὩ ύὥὺ ίὭὫὲὥὰ 

ὛώὲὧὄὩὩὴς ὭὲὰέὫ ὛώὲὧὄὩὩὴρ Ὥὲ ὰέὫ
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2.5 Data segmentation 

Each data collection session ends with a sound recording and a log file containing item 

IDs and timestamps generated by BrowseHTMList. The timestamps are synchronized using the 

procedure described above. After that, a TextGrid is generated where each line in the log file is 

associated with its relevant part of the WAV signal. To improve the quality of the alignment, I 

ran a Praat script that marks the pauses in the WAV signal in a TextGrid.
7
 There are two 

TextGrids at this stage, the first marking the IDs of the Swadesh items in the TextGrid intervals. 

The second marking the intervals of pauses and speech in another TextGrid. A script is 

developed to get the utterance IDs of each Swadesh item from the first TextGrid, and attach it to 

the best matching utterance interval in the second grid. This generates a new TextGrid with 

Swadesh items marked in the intervals of speech. To review the results, all the TextGrids are 

combined and a script goes though the potential lexical items and plays them for the researcher 

to review. Mistakes can be easily fixed by having all TextGrids in one Praat window. A manual 

review is necessary to check for errors and fix cases where the boundaries are not set correctly or 

when words are given an incorrect ID. Figure 2.4 shows a sample of a TextGrid. 

                                                 
7
 This step is achieved with the help of mark_pauses.praat. A script developed by Mietta Lennes, available at: 

http://www.helsinki.fi/~lennes/praat-scripts/public/mark_pauses.praat 
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Figure 2.4 Snapshot from a TextGrid for the production of Swadesh item number 3 as produced by one of the 
participants. Starting from bottom up: Tier 3 contains the results of the mark pauses step. Tear 2 is the result of the 

TextGrid generated based on BrowseHTMList. Tear 1 is the TextGrid used to segment the Swadesh items. 

 

At the end of this stage, I run a script to resolve any possible redundancy in interval IDs, 

then another script to segment the WAV signal based on the TextGrid. Each interval ID is given 

to the extracted file name. The last step is to allow simpler accessibility by creating an HTML 

page where all items are listed along with their IPA transcription, Arabic script, and links to the 

sound files of the three utterances. 

 

2.6 Transcription  

All words are transcribed in both Arabic script and IPA. Arabic script is used to build the 

list of words that the participants will be given as words in other varieties. All participants are 

born and raised in a major city in the Arab world so they are expected to be capable of reading 

words in Arabic script. IPA script is later used as input to the measures of variation (see Chapters 

3-5). To minimize the amount of manual work, I developed a script to generate an IPA 

transcription based on the Arabic script. Avoiding complications in the process of generating 
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IPA script based on Arabic script is achieved by following a set of guidelines to transcribe in 

Arabic script. 

The primary guideline of the transcription based on Arabic script is to have one-to-one 

mapping between the IPA symbols and the Arabic symbols. The first guideline causes alterations 

to way the script is normally used. So, the secondary guideline to have the resulting Arabic 

transcription as comprehendible as possible to educated native speakers of Arabic. I used only 

one symbol to represent a glottal stop in Arabic script, the symbol is ( )̭ which is one of the 

symbols representing the glottal stop. I also borrowed letters from Persian script to represent 

some sounds that are not represented in Arabic script, the introduced symbols are  ͯand ͥ  to 

represent /g/ and/ t▐ώ/ respectively. In addition, I used the diacritic sukuun (used to mark the 

absence of a vowel in standard Arabic script) to the mark short mid vowel /ᴅ/. All Long vowels 

are transcribed as Ϝ, м and р. Then, each letter in Arabic is mapped to the corresponding IPA 

symbol according to table 2.2. м and р are considered glides if they are preceded or followed by a 

vowel and transcribed as w and y respectively. Otherwise, they are transcribed as long vowels U 

and I respectively. Some sounds vary from one variety to another; these are mainly Ϭ and the 

word final taa marbuuta Ϣ. They are mapped depending on the participantôs dialect. Note that the 

Egyptian variety does not have the sounds ᾎ and ᾠ so the standard Arabic Ϭ is used to represent 

the sound g, this increases the comprehensibility of the resulting script. After the auto conversion 

from Arabic to IPA, all words are manually reviewed and corrected in cases of mistakes. As 

mentioned earlier, Appendix A contains all the words of the Swadesh list form all participants. 
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Table 2.2: Mappings of Arabic letters to IPA letters 

Arabic Script IPA Arabic Script IPA Arabic Script IPA 

 ̭ ┴ Ќ  Ř 

Variety 
dependent 

conversions 

Ϣ 
₳  For LA 

Ϟ b А ǘ a  Otherwise 

Ϥ t Д ś 

Ϭ 
╞  For MSA and GA 

Ϩ  ̒ И ┼ ┤  For MA and LA 

ϰ ƚ М ≈ g  For EA 

ϴ x Р f 

Long 
vowels 

and glides 

Ϝ A 

ϸ d Ф q 
м 

w  If preceded or followed by a vowel 

Ϻ ð Ш k U  Otherwise (long back high vowel) 

ϼ r Ь l 
р 

y  If preceded or followed by a vowel 

Ͼ z а m I  Otherwise (long front high vowel) 

Ѐ s д n 

Short 
vowels 

 ̲ a low vowel 

Є ≡ и h  ̳ u back high vowel 

Ј  ǎ  ͯ g  ̴ i front high vowel 

 ͥ ¢  Voiceless postalveolar 

affricate. Also written as / t▐ώ/ 

 ̶ ₳ mid vowel 

  ̵ + germination for consonants 

 
 

 

MSAôs vocalic system contains three vowel categories. Each of the three categories 

consists of short and long vowels. Short vowels are represented by diacritics and long vowels are 

represented by letters in the orthography of the language. The number of vowel categories in the 

spoken varieties is larger. Quantifying the variation between varieties of different vocalic 

systems is problematic because the variation depends on the granularity of defining vowel 

categories. Providing a fine-grained representation of vowels that captures, for example, the 

contrasts between vowels due to the presence or absence of emphatic consonants leads to having 

a large amount of variation that is derived from having different vowels; however the vowels 

might be close phonetically. To resolve this problem, I provide two measures of pronunciation 

variation. One based on a small number of vocalic categories and the other based on the formant 
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frequencies of the vowels in each utterance. MSA is excluded from the measure of pronunciation 

variation based on the formant frequencies because of the lack of the acoustic data. At the other 

level where the variation is based on a small number of vowels, the representation of vowels in 

the spoken varieties should be made comparable to what we know about MSAôs vocalic system. 

One might think that it is better to limit the number of vowel categories to three in an effort to 

have the same number of vowels in the spoken varieties and in MSA. However, the existence of 

mid vowels, including schwa, in the dialects makes the problem more complicated. One 

approach to solve this problem is to set the number of vowels to four in the dialects. So, we have 

three vowels that are considered similar to the vowels in MSA and a mid-vowel. This is not to 

claim that the spoken varieties have only four vowels in their vocalic inventories; most of them 

have more. The use of four vowels only is justified because we are comparing against MSA and 

because we have a more fine-grained representation of vowels based on the first and second 

formant frequencies at a level of comparison where MSA is not included. 

The conversion of the consonants in MSA from orthographic letters to IPA is based on 

the researcherôs knowledge of the language and based on the available references of Arabic. The 

pronunciation of ji:m (Ϭ) is considered to be a voiced alveolar affricate ӫ (Holes 2004, p. 58). 
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2.7 Predicting vowel landmarks 

Measuring the formant frequencies for vowels starts by locating a landmark where the 

formant frequencies are to be sampled. I developed an algorithm to predict a landmark for 

vowels in the acoustic signal using the IPA transcription as one of the parameters. Vowels are 

expected to be in the syllable nucleus position and they are expected to be the loudest phonetic 

segments in the acoustic signal. Mermelstein (1975) developed an algorithm to segment the 

acoustic signal into syllables based on loudness maxima and minima. The loudness, as he 

defined it, is a time smoothed and frequency weighted summation of the energy content. De Jong 

and Wempe (2009) developed an algorithm to detect syllable nuclei in an effort to measure 

speech rate. Their algorithm is based on locating intensity peaks that are preceded and followed 

by dips in intensity. Following the same principle, the developed algorithm locates the vowels 

based on loudness. The inputs to the algorithm are the acoustic signal, the IPA transcription of 

the word, and the approximated average formant frequencies of the vowels for the speaker. The 

output is a list of vowels that existed in the input IPA transcription and the predicted landmark 

for each. A value less than zero is assigned to the landmark when the algorithm fails to locate the 

vowel. The availability of the IPA transcription is an additional clue that Mermelstein (1975) and 

De Jong and Wempe (2009) did not have. There are three main benefits of having this extra 

input: the exact number of vowels, and therefore the number of loudness peaks, is known; the 

vowels and the approximate values of the formant frequencies are also known ï this is given as 

input to the algorithm; and the number of voiced segments is known, so we can map each vowel 

to its corresponding voiced segment.  

The process of predicting vowel location is divided into four stages using heuristics to 

automatically locate vowel landmarks with significantly higher than chance accuracy (see Table 
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2.6 at the end of this section). The first stage limits the range of the location prediction by 

mapping the relevant voiced segment in the IPA transcription to the corresponding voiced 

segment in the acoustic signal. Identifying voiced segments in the acoustic signal starts by 

calculating the value of F0 every 1ms, which is a shorter interval than the shortest possible pulse 

period. Consecutive values of F0 that are within the range of valid values for pitch are 

considered voiced segments.
8
 Supplementing this, consecutive voiced phones in the IPA 

transcription are also considered voiced segments. If the number of voiced segments in the IPA 

transcription equals the number of voiced segments in the acoustic signal then the location of 

voiced segments of the IPA transcription are mapped one-to-one to the corresponding voiced 

segments of the acoustic signal. If the number of voiced segments in the acoustic signal is more 

than the number of voiced segments in the IPA transcription then I assume that there are some 

voiced segments in the acoustic signal that are divided into more than one segment. This issue is 

resolved by repeatedly merging the smallest voiced segment in the acoustic signal to the closest 

voiced segment to it until we reach an equal number of voiced segments. Figure 2.3 shows an 

example of merging two voiced acoustic segments. This problem is apparently due to having 

some parts of the voiced segment where the calculation of the pitch did not provide a valid value. 

Which in turn, could be due to creakiness or some distortion in the acoustic signal. 

                                                 
8
 This task is accomplished by running the Praat command: To Formant (burg)é 0 5 5000 0.025 50. 

The threshold for pitch is set to 170 Hz, values more than the threshold are not considered valid pith values. 

Calculating the pitch using other techniques or having another dataset might result with another threshold. 
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Figure 2.3 ¢ƘŜ ǳǘǘŜǊŀƴŎŜ άba┼Řέ ǇǊƻǾƛŘŜŘ ōȅ 9!лм ƛƴ ǘǊŀƴǎƭŀǘƛƻƴ ŦƻǊ {ǿŀŘŜǎƘ ƛǘŜƳ ƴǳƳōŜǊ нлΦ ¢ƘŜ utterance is 
articulated as two voiced segments, the two voiced segments are merged. 

 
 

 

In the case of having more IPA voiced segments than acoustic voiced segments, the 

solution is a bit more complicated. This could happen if some of the voiced segments are 

devoiced by the speaker or if some of the unvoiced segments are voiced in a context of voiced 

segments. The solution is to predict the devoiced segments and ignore them from the IPA 

transcription. If the mismatch in the number still exist, I force merge the voiced segments in both 

sides. The force merge accounts for cases of voicing a voiceless phoneme in context of voiced 

phones. After looking closely at the dataset in hand, I composed four phonological rules to 

account for the cases of devoicing of phonetic segments at word boundary positions. This 

strategy resolved most of the problems in the dataset. Nevertheless, different languages or 

datasets might have different rules or different ordering of rules. The rules in the order used for 

the Arabic dataset in this study are as follows: 

1. Ignore a vowel between two voiceless stops in the word initial position. Accounts for 

devoiced vowel between two voiceless stops in word initial position. In such cases, 

Comment [O15]: EA01/SWADESH_020_var_01_
03 
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vowels are predicted to be voiceless. Figure 2.4 shows an utterance where a schwa 

between two voiceless stops is devoiced in word initial position. This caused the 

acoustic signal to have only one voiced segment while the IPA transcription indicated 

two. The algorithm ignores the first voiced segment in the IPA transcription and 

matches the remaining voiced IPA segments to the corresponding segments in the 

acoustic signal. 

 

 

Figure нΦп ¢ƘŜ ǳǘǘŜǊŀƴŎŜ άƪ₳ǘLǊέ ǇǊƻǾƛŘŜŘ ōȅ 9!лм ƛƴ ǘǊŀƴǎƭŀǘƛƻƴ ŦƻǊ {ǿŀŘŜǎƘ ƛǘŜƳ number 18. The Schwa 
is devoiced. 

 
  

Comment [O16]: EA01/SWADESH_018_eng_01
_01 
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2. Ignore a voiced consonant or vowel after a voiceless consonant in the word final 

position. Accounts for devoiced segments of single phoneme after a voiceless 

consonant in word final position. Figure 2.5 shows an utterance where a word final 

nasal is devoiced, or almost not articulated, after a voiceless stop. The last voiced 

segment in the IPA transcription is being ignored. 

 

Figure нΦр ¢ƘŜ ǳǘǘŜǊŀƴŎŜ άōŀǘ ƴέ ǇǊƻǾƛŘŜŘ ōȅ 9!лм ƛƴ ǘǊŀƴǎƭŀǘƛƻƴ ŦƻǊ {ǿŀŘŜǎƘ item number 85. The 
utterance final nasal is devoiced. 

 
 

  

Comment [O17]: EA01/SWADESH_085_eng_01
_03 
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3. Ignore a voiced word initial consonant before a voiceless consonant. Accounts for a 

devoiced consonant cluster containing a voiced consonant followed by a voiceless 

consonant in word initial position. Figure 2.6 shows an utterance where the word 

initial voiced stop is devoiced before a voiceless fricative. The first voiced segment in 

the IPA transcription is ignored. 

 

 

Figure нΦс ¢ƘŜ ǳǘǘŜǊŀƴŎŜ άƎǎ LǊέ ǇǊƻǾƛŘŜŘ ōȅ D!лм ƛƴ ǘǊŀƴǎƭŀǘƛƻƴ ŦƻǊ {ǿŀŘŜǎƘ item number 33. The 
utterance initial voiced stop is devoiced. 
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4. Ignore a vowel following a voiceless stop and preceding a voiceless consonant in 

word initial position. Accounts for devoiced vowels after a word initial voiceless stop 

and before a voiceless consonant. In such case, the vowel is predicted to be voiceless. 

Figure 2.7 shows an utterance where a vowel after a voiceless stop and before a 

voiceless fricative is being devoiced. Similar to the first three rules, one of the voiced 

IPA segments is ignored. In this rule, the ignored voiced IPA segment is the first one. 

 

Figure нΦт ¢ƘŜ ǳǘǘŜǊŀƴŎŜ ά┴ŀƚƳŀǊέ ǇǊƻǾƛŘŜŘ ōȅ D!лн ƛƴ ǘǊŀƴǎƭŀǘƛƻƴ ŦƻǊ {ǿŀŘŜǎƘ ƛǘŜƳ ƴǳƳōŜǊ мтнΦ ¢ƘŜ 
first vowel is devoiced. 
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If the number still does not match then merge the voiced IPA segments starting by the 

first voiced segment and ending by the last voiced segment into one segment. Similarly, merge 

the corresponding voiced acoustic segments. This enforces the number of voiced segments in 

both the acoustic signal and the IPA transcription to be equal to one. So, the algorithm never fails 

to match the number of segments. Figure 2.8 shows an utterance where a voiceless fricative is 

detected as voiced fricative in context of voiced phones. This is a frequent phonological change 

that is recovered by the merger rule. 

 
 
 
 

Figure 2.8 ¢ƘŜ ǳǘǘŜǊŀƴŎŜ άǎǘŀŦǊŀ≈έ ǇǊƻǾƛŘŜŘ ōȅ 9!лм ƛƴ ǘǊŀƴǎƭŀǘƛƻƴ ŦƻǊ {ǿŀŘŜǎƘ ƛǘŜƳ ƴǳƳōŜǊ нлΦ ¢ƘŜ 
voiceless fricative /f/ is voiced in context of voiced phonemes. 

 
 

 

 

The second stage of the algorithm is to evaluate the loudness of the acoustic signal. The 

first step is to split each voiced segment of the acoustic signal into acoustic units where the 

loudness is computed and compared, the acoustic units are the pitch periods identified in range of 

Comment [O20]: GA01/SWADESH_097_var_
01_02 
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75 to 500 
9
. For each pitch period in the acoustic signal, the loudness is calculated based on two 

methods. The first method calculates loudness based on the average amplitude of the absolute 

values of the sound pressure values, to be referred as the average amplitude method. The second 

method calculates loudness based on the maximum value of sound pressure minus the minimum 

value of sound pressure in the pitch period, to be referred as the max-min method. Each method 

generates a sequence of values representing the loudness of the acoustic signal of the relevant 

voiced segment. Both of these sequences of values are considered later in the analysis. Figure 2.9 

shows the pitch periods and the results of two methods of evaluating the loudness in an utterance 

containing two voiced segments; the first voiced segment contains two vowels and one vowel in 

the second voiced segment.  

 

Figure нΦф ¢ƘŜ ǳǘǘŜǊŀƴŎŜ άǎŀƳŀƪŀέ ǇǊƻǾƛŘŜŘ ōȅ 9!лм ƛƴ ǘǊŀƴǎƭŀǘƛƻƴ ŦƻǊ {ǿŀŘŜǎƘ ƛǘŜƳ ƴǳƳōŜǊ 45. With 
illustration of the two methods of evaluating the loudness. 

 

                                                 
9
 This task is accomplished by running the Praat command: To PointProcess (periodic, cc)... 75, 

500  
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In the third stage I find a preliminary landmark for the vowels based on the maxima in 

the loudness sequences. If the number of maxima in the loudness sequence equals the number of 

vowels in the corresponding voiced segment, then the location of maxima are set as preliminary 

predicted vowel landmarks. However, due to natural fluctuations in the acoustic signal, the 

number of maxima is often more than the number of vowels. In that case, the loudness sequence 

is smoothed repeatedly with the Simple Moving Average (SMA) algorithm (window size 3) until 

the number of maxima is equal to or less than the number of vowels. SMA recalculates the value 

of each point in the sequence as the average of the point itself and points before and after it. So, 

each value at index i is calculated as the average of the values at indices i-1, i, and i+1 . In the 

event that the state of equal number of maxima and vowels was not reached, the prediction based 

on a loudness sequence fails. For the purposes of this study, SMA provided satisfactory results. 

However, the vowel prediction algorithm can be potentially improved by experimenting with 

different smoothing techniques. Figure 2.10 shows the repeated smoothing of the loudness 

sequences of the utterance plotted in Figure 2.9. For instance, the loudness sequence of the first 

voiced segment evaluated using the max-min method contained three maxima while the relevant 

voiced IPA segment contained two vowels. After smoothing the sequence one time, we are still 

having three maxima. Smoothing the sequence again resulted with two maxima that are used as 

preliminary predicted landmarks for their corresponding vowels. 
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Figure 2.10 ¢ƘŜ ǳǘǘŜǊŀƴŎŜ άǎŀƳŀƪŀέ ǇǊƻǾƛŘŜŘ ōȅ 9!лм ƛƴ ǘǊŀƴǎƭŀǘƛƻƴ ŦƻǊ {ǿŀŘŜǎƘ ƛǘŜƳ ƴǳƳōŜǊ прΦ ²ƛǘƘ 
illustration of the prediction of the preliminary vowel landmarks using the two methods. 

 

 

 

  

Comment [O22]: EA01/SWADESH_045_eng_
01_01 



37 

 

As mentioned earlier, the preliminary predicted vowel landmarks are set to the maxima of 

the repeatedly smoothed loudness sequences once a state with an equal number of maxima and 

vowels is reached. If the preliminary predicted vowel location happened to be in a pulse where 

the value of the first formant frequency or the value of the second formant frequency is not stable 

then the algorithm scans for the closest stable pulse located between the minima around the 

maximum of the preliminary predicted vowel landmark. The stability of a pitch period regarding 

the formant frequencies is defined by having a standard deviation of the values for both the first 

and second formant frequencies in the pitch period of less than 50
10

. If a stable pitch period is 

found then the predicted vowel landmark is set to the center of the closest stable pitch period; 

otherwise the predicted vowel landmark is set to the preliminary vowel landmark. By the end of 

this stage, we have predictions from two methods for each vowel with the possibility of failure in 

one of them or both. Each prediction is evaluated based on the two definitions of loudness in the 

previous stage and based on the stability of the first and second formant frequencies. 

The fourth stage compares the two preliminary prediction values and selects the one that 

generated values of the first and second formant frequencies closest to the expected values for 

the first and second formant frequencies of the vowels encoded in the IPA transcription. This 

stage requires the average values of formant frequencies for each speaker and for each vowel to 

be estimated. The estimation of the formant frequency values for each speaker and vowel is 

based on a manually segmented sample of the data. The sample of vowels is a subset of the 

elicitations of the Swadesh list. From each participant, three distinct words containing 

productions of each of the four vowels are selected. The total number of the manually segmented 

vowels is 288 (8 participants × 4 vowels × 3 words × 3 repetitions for each word). For each 

                                                 
10

 The value of 50 is an ad-hoc number that is set based on trial and error. 



38 

 

vowel production I measured the first and second formant frequencies at the mid-point of the 

vowel. Then I deleted one of the three repetitions that generated the most distant formant 

frequencies resulting in 192 vowels. Then I manually deleted 44 vowels because they provided 

outlying, unreliable values for the formant frequencies. After the last step, the average was 

calculated based on the remaining 148 utterances. So each vowelôs formant frequencies are based 

on 3 to 6 utterances. Table 2.4 shows the values of the formant frequencies for the vowels for 

each participant. The estimated values of the formant frequencies are used to select one of the 

two vowel landmarks predicted by the previous stage of the algorithm. Table 2.5 shows the 

number of vowels in the data set, the number of predictions produced by each method and the 

number of predictions selected from each method, as well as the number of vowels for which 

both methods failed. 
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Table 2.4: The values of the manually calculated vowel formant frequencies for all vowels for each participant 

SPEAKER_ID VOWEL formant1 formant2 

EA01 

 

a 450 1533 

ᴅ 370 1621 

i 242 2299 

u 297 840 

EA02 

a 489 1481 

ᴅ 333 1622 

i 272 2083 

u 325 843 

GA01 

a 450 1170 

ᴅ 426 1224 

i 340 1974 

u 340 1006 

GA02 

a 612 1219 

ᴅ 454 1331 

i 315 2169 

u 412 766 

LA01 

a 510 1326 

ᴅ 384 1481 

i 293 2270 

u 340 864 

LA02 

a 370 1313 

ᴅ 297 1184 

i 273 2018 

u 328 739 

MA01 

a 603 1347 

ᴅ 473 1413 

i 302 2154 

u 450 988 

MA02 

a 463 1319 

ᴅ 374 1312 

i 262 2348 

u 383 938 
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Table 2.5: Results of the prediction algorithm 

 Count Percentages 

Vowel count 9534 100 

Cases of vowels predicted to be voiceless by 

phonological rules 

27 0.28 

Predictions produced by the average amplitude 

method 

9200 96.5 

Predictions produced by the max - min method 9224 96.75 

Selected predictions produced by the average 

amplitude method 

6664 69.9 

Selected predictions produced by the max - min 

method 

2723 28.56 

Both methods failed to predict a landmark 120 1.26 

 

 

 

To test the accuracy of the prediction algorithm, I randomly selected 132 words from the 

dataset. All word repetitions are manually segmented so the start and end points for each vowel 

are known. 737 vowels existed in this data set. The algorithm described above correctly detected 

650 vowels of the testing data set: 88.2% of the vowels are correctly detected. The 11.8% failed 

cases are either due to a failure to smooth the loudness sequence so that the number of maxima 

equals the number of vowels or due to a misprediction where the predicted vowel landmark is 

outside the vowel. Table 2.6 summarizes the results of the testing data set. Given the large 

number of vowels in the study where a manual segmentation of the vowels is not feasible, the 

accomplished accuracy is considered satisfactory. 
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Table 2.6: Results of testing the prediction algorithm. 
 Count Percentages 

Vowel count in the testing data set 737 100 

Cases of vowels predicted to be 

voiceless 

1 0.14 

Vowel predicted correctly 650 88.2 

Vowel predicted incorrectly 75 10.18 

Failed to predict a vowel landmark 11 1.49 

 

 

  

2.8 The non-categorical representation of vowels 

I obtain a non-categorical representation of vowels by representing each vowel by two 

numbers derived from the values of first and second formant frequency at the predicted 

landmark. The objectives of doing so are to provide a more fine-grained representation of the 

vowels than the four categories used in the transcription and to rule out the subjectivity of the 

researcher in deciding what the vowel is in each word. The guidelines of the design of the 

proposed representation of vowels are (1) to have each vowel represented by two numbers that 

reflect the place of articulation and the degree of constriction at the place of articulation. (2) To 

have a considerable amount of the values between 0 and 1, this guidelines is to simplify the way 



42 

 

the values are used to calculate the pronunciation variation (chapter 5). The last guideline is (3) 

to rule out physiological differences among the vocal tracts of the speakers. 

I follow an eight-step procedure to achieve the proposed representation of the vowels. 

The first step is to calculate the values of the first and second formant frequencies at the 

predicted landmarks for the three repetitions of each Swadesh list item. Therefore, each vowel in 

each word is represented by three estimations of the formant frequencies. The second step is to 

delete the prediction that generates the most distant formant frequencies from the average 

formant frequencies; the averages are calculated for each speaker and for each vowel based on a 

sample as described in section 2.7. The third step is to eliminate outliers. For each vowel 

category and for each speaker, I calculate the mean and standard deviation of the distance 

between the formant frequencies of the vowels and the average formant frequencies. Vowels that 

are distant more than four times the standard deviation of the distances between vowels and the 

relevant average vowels are set as outliers. The fourth step is to recalculate the formant averages 

based on the results of steps one through three and to repeat step two and step three based on the 

newly calculated averages. This step is motivated because we now have a data set that enables us 

to achieve a more accurate averages, the averages used in the previous step were based on a 

relatively small sample as described in Section 2.7. Table 2.7 shows the values of the 

recalculated averages of the formant frequencies. The fifth step is to assign default values for the 

formant frequencies of the outliers, the cases of failed predictions and the cases of predicted 

voiceless vowels as reported in Table 2.4. The default values are the average formant frequencies 

for each vowel for each speaker. The sixth step is to normalize the values of the formant 

frequencies to eliminate the physiological differences among speakers. I used Nearey (1978) 

normalization technique using ñNearey1, formant intrinsicò technique as implemented by 

Comment [M24]: Calculate F1 and F2 

Comment [M25]: Delete one of three 

Comment [M26]: Eliminate out outliers 

Comment [M27]: Recalculate averages 
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Thomas and Kendall (2007)
11

. The seventh step is to scale the normalized values so that a 

considerable amount of the values is in a range between 0 and 1. This is done by calculating the 

overall average for the first and second formant frequency for each vowel across speakers, keep 

in mind that the previous step normalized the differences between speakers. The smallest and 

largest averages are scaled to 0 and 1 respectively. The same ratio of scaling applies to all 

vowels. This method of scaling resulted in 48% of the scaled formant frequencies being in the 

range of 0 and 1 for both scaled formants. Figure 2.11 shows the positions of the scaled values of 

the formant frequencies for the vowels. In addition, it shows the dispersion of the values by 

circles marking one standard daviation around the average values, dashed circles correspond to 

short vowels and solid circles correspond to long vowels. The corners of the dotted box represent 

the values ((0,0), (0,1), (1,1), (1,0)). Note that each edge lies on at least one of the averages of 

either F1 or F2. The eighth step is to encode the vowels in the IPA transcription of the words in 

the Swadesh list non-categorically based on the values calculated in the seventh step. 

  

                                                 
11

 The calculation is based on http://ncslaap.lib.ncsu.edu/tools/norm/norm1.php 
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Table 2.4: The values of the manually calculated vowel formant frequencies for all vowels for each participant 

SPEAKER_ID VOWEL formant1 formant2 

EA01 

 

a 482 1283 

ᴅ 389 1101 

i 317 2037 

u 340 801 

EA02 

a 451 1391 

ᴅ 373 1638 

i 256 2227 

u 308 923 

GA01 

a 525 1338 

ᴅ 508 1229 

i 340 1926 

u 370 1047 

GA02 

a 604 1396 

ᴅ 563 1437 

i 308 2225 

u 382 777 

LA01 

a 534 1272 

ᴅ 360 1542 

i 290 2270 

u 327 956 

LA02 

a 478 1383 

ᴅ 279 1554 

i 317 1898 

u 297 909 

MA01 

a 492 1319 

ᴅ 460 1338 

i 313 1898 

u 380 1010 

MA02 

a 431 1331 

ᴅ 446 1377 

i 308 2047 

u 349 1041 
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Figure 2.11 Plot of vowels produced by the speakers. The circles show one standard deviation around the average 
formant frequencies for each vowel. Dashed circles correspond to short vowels. The corners of the dotted box 

represent the values ((0,0), (0,1), (1,1), (1,0)). 
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CHAPTER 3 

MEASURE OF LEXICAL VARIATION BASED ON THE PERCENTAGE OF NON -

COGNATE WORDS 

 

In this chapter, I report on a variation metric based on the percentage of non-cognate 

words in the Swadesh list. The basic assumption is that the closer the varieties are the more 

likely they are to have cognate words with the same meaning. A pair of words is identified as 

cognates if they share the same linguistic origin. Cadora (1979) used a similar method to assess 

the lexical relationships among major Urban Syro-Lebanese varieties. He used a list of 200 items 

that consisted of 100 items from the Swadesh list and 100 items from Ferguson-Saôidôs list
12

. 

Cadora highlighted the possibility of having a pair of cognate words in two varieties with 

different meanings or with slightly different meanings. He gave the example of the meaning of 

óbedô in Damascus and Aleppo as taxit and sariir respectively. A cognate of sariir exists in the 

variety of Damascus with the meaning of ócrib.ô This highlights the importance of specifying the 

context of the words in the Swadesh list. An example from the Swadesh list used in the current 

research is the word fat that has two senses, as a noun it means the substance fat found in human 

and animal bodies and as an adjective it means obese. The first sense can be translated as simiin 

in EA, according to the informant we had. While a cognate of the Egyptian word, smiin in LA 

means the second sense of the word, obese. Presenting the participants with only the English 

words might lead to such confusion, where translation of different senses might be provided. To 

eliminate confusion, Cadora defined the term of contrastive compatibility as a pair of non-

                                                 
12

 Ferguson-Saôidôs list is not published; therefore, there is no citation for it. 
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cognate words with the same meaning. In the present study, this problem is resolved by 

specifying a disambiguating context to each of the Swadesh list, the context enforces all elicited 

items to have the same meaning. 

Cadora employed the same widely accepted method of using the percentage of non-

cognate words to measure the lexical distance. He found a correlation between the geographical 

distance and the lexical distance of some varieties. He divided the Syro-Lebanese varieties into 

three main groups that reflected their geographical locations. The Lebanese varieties, in addition 

to the Syrian variety of Latakia, are categorized as the western group. The dialect of Deir-Ezzor 

stands alone in the eastern group. The other major Syrian varieties ï Damascus, Homs, Hama, 

and Aleppo ï constitute the central group. He also examined other major varieties of Arabic 

outside the Syro-Lebanese area and the lexical distance between these varieties and all the Syro-

Lebanese varieties in his study (Cadora 1979). 

Kessler (1995) used two methods to define cognates. In the first method, called etymon 

identity, words are defined as cognates if their stem has the same ultimate derivation. In the 

second method, called word identity, words are defined as cognates only if the word is also 

cognate at the morphemic level; each morpheme in the word must be cognate in the pair of 

words. Kessler compared the two methods against previously developed traditional methods to 

develop dialect maps. The first method seemed to resemble the traditional methods more than the 

second. In addition to these two basic methods, Kessler developed other metrics that are 

reviewed with more details in the relevant chapters later in this thesis. 

Gray and Atkinson (2003) used the idea of cognate words to estimate when a set of Indo-

European languages diverged from each other. They looked at the shared cognate words between 
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the languages under consideration. It is important to note that the definition of cognate words 

they used is different from the one we are using. The main difference is that Gray and Atkinson 

(2003) exclude cases of borrowing from the list of cognates; as for the current research, words 

are considered cognates if they have the same linguistic origin, whether by borrowing or genetic 

inheritance. The difference is justified by having different purposes, where the purpose of the 

current study is to reflect the degree of mutual intelligibility. On the other hand, Gray and 

Atkinsonôs intentions were to estimate the divergence time between the languages in the history. 

The decision of whether a pair of words are cognates or not is a subjective judgment based on the 

researchersô knowledge of the language. For each entry in the Swadesh list, I assign a unique ID 

for the set of words that are considered cognates. A table containing decisions of cognates and 

non-cognates is provided in appendix A.  

The design of the lexical variation metric between two varieties in this study is based on 

the likelihood of a word to be produced as a translation of the Swadesh list item by a speaker to 

express the meaning implied by the context sentence and the likelihood of a cognate of that word 

to be also produced by a hearer from the other variety. One of the guidelines for the data 

collection is to have the participants provide only the words that they would produce when they 

speak the language. If both the speaker and hearer would produce a word from the same 

linguistic origin to express the same meaning then the communication is expected to be 

smoother. So, the smoother the communication is the smaller the amount of variation should be, 

to express that the varieties are closer to each other. For example, item 39 of the Swadesh list, 

óchildô in reference to a 5 years old child as the context specifies, is produced as walad and Ӝayyil  

by EA01 (the first Egyptian participant), and is produced as t֙ifl and Ӝayyil  by EA02. Since the 

Egyptian variety is represented by the two participants in this research, the likelihood of the word 
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Ӝayyil  to be produced is 50%, and 25% for each of the other two words. From the perspective of 

a hearer from the Gulf variety, a cognate of t֙ifl is available, while no cognate of walad or Ӝayyil  

was provided by the Gulf participants. Therefore, 25% of the possible forms are shared in the 

Gulf variety, so the contribution of item 39 of the Swadesh list for an Egyptian speaker and Gulf 

hearer is an amount of 0.75 because three out of four words are non-cognates. Applying the same 

procedure for all words in the Swadesh list and taking the average of the contribution of each 

word results with the measure of lexical variation. 

The current algorithm gives words provided by the speaker(s) equal weights. It might be 

considered more intuitive to assign bigger weights for more frequent words. For instance, the 

weights might be derived from a corpus based on the frequency of the words. A corpus to be 

used in this situation needs to be big enough to contain all the words or at least most of the words 

of the Swadesh list. While this would be a good idea, frequency is not considered in the current 

research because such corpora unfortunately do not exist for all varieties under consideration yet. 

Therefore, all words are weighted equally. 

Table 3.2 summarizes the results of the measure of lexical variation between the varieties 

of Arabic based on the words elicited by the participants including words they provided based on 

the English word and English context sentence along with the words they provided based on 

what other participants have provided. Table 3.3 shows the results based on the words that the 

participants provided before they had the chance to know what other participants provided. This 

shows the effect of incorporating the extra step of asking the participants about the words 

provided by other participants. Mainly, this caused the amount of linguistic variation to become 

smaller for most pairs of varieties to different degrees. In our opinion, this step is necessary to 

Comment [M32]: start of results 
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reliably measure linguistic variation and will be included in the following measure of linguistic 

variation. Table 3.4 shows the amount of lexical variation between the participants.  

 

 

 

Table 3.2 The lexical variation metric between the varieties of Arabic. 

  

Hearer 

  

EA GA LA MA MSA 

Sp
e

a
ke

r 

EA  0.17 0.10 0.28 0.14 

GA 0.21  0.14 0.26 0.15 

LA 0.16 0.15  0.27 0.13 

MA 0.30 0.23 0.24  0.22 

MSA 0.19 0.14 0.12 0.25  
 

 

 

Table 3.3 The lexical variation metric between the varieties of Arabic based on words provided only by the English form 

of the Swadesh list. 

  

Hearer 

  

EA GA LA MA MSA 

Sp
e

a
ke

r 

EA  0.19 0.15 0.31 0.14 

GA 0.23  0.15 0.29 0.14 

LA 0.19 0.15  0.29 0.12 

MA 0.32 0.27 0.27  0.23 

MSA 0.22 0.17 0.16 0.29  
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Table 3.4 The lexical variation metric between the participants in the experiment 

  
Hearer 

  
EA01 EA02 GA01 GA02 LEV01 LEV02 MOR01 MOR02 MSA 

S
p
e

a
k
e

r 

EA01  0.04 0.21 0.26 0.17 0.17 0.30 0.32 0.13 

EA02 0.04  0.20 0.25 0.16 0.16 0.29 0.30 0.14 

GA01 0.22 0.22  0.18 0.16 0.20 0.25 0.27 0.13 

GA02 0.23 0.23 0.14  0.20 0.22 0.30 0.30 0.17 

LEV01 0.19 0.18 0.15 0.24  0.12 0.27 0.28 0.12 

LEV02 0.20 0.19 0.19 0.25 0.12  0.31 0.32 0.13 

MOR01 0.31 0.30 0.24 0.32 0.25 0.29  0.05 0.19 

MOR02 0.33 0.31 0.26 0.33 0.27 0.30 0.05  0.23 

MSA 0.22 0.22 0.18 0.26 0.17 0.18 0.29 0.29  

 

The closest varieties to each other are EA, LA and GA, while MA is farther from the 

others. As a generalization, we observe from these tables that geographically proximate 

languages are also linguistically more similar based on the lexical variation metric. Looking at 

the amount of lexical variation between speakers of the same variety, we also observe that the 

closest pair of participants is the EA speakers as they are from the same city, they are also close 

geographically. The MA participants are from different cities in the same country, they are also 

close to each other lexically. On the other hand, the two GA participants are less close to each 

other compared to the EA and MA participants. The GA participants are from different countries 

although the cities they represent are close to each other. Similar to the GA participants, The LA 

participants are also less close to each other. They are from two far away cities located in two 

countries without a common border between them. As a generalization based on the limited 

number of participants in this study, speakers from different countries tend to be linguistically 

more distant. This generalization should be confirmed by considering more speakers from more 

diverse geographic distances and from more locations.  

Additionally, the asymmetry of the measurement is apparent, such as when comparing 

the amount of lexical variation between EA speakers and GA hearers in contrast to the amount of 
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lexical variation between GA speakers and EA hearers. This difference in lexical variation is 

because the different varieties may have different inventories of lexical items that would permit 

the comprehension of those lexical items in another variety; for example, if a speaker of one 

variety knows two words for an item on the list, they would fully understand a variety that uses 

only one of those words, but a speaker of that second variety would only understand a speaker 

from the first variety half of the time. 

The amount of lexical variation between EA speakers and hearers from the other varieties 

are less than the amount of lexical variation between EA hearers and speakers from other 

varieties. This mirrors a pattern of intelligibility we observe regarding the communication of 

Egyptian speakers and members of other varieties; the Egyptian speakers are understood better 

than they understand members of other varieties. This, most of the time, causes speakers from 

other varieties to accommodate for Egyptian speakers. Additionally, we observe from the data 

that the amount of lexical variation between LA hearers and speakers of other varieties are less 

than the amount of lexical variation between LA speakers and hearers from other varieties. This 

might imply that members of the LA variety are able to understand members of other varieties 

better than the other varieties understand them. 

The results also show that the closest variety to MAS is LA as both hearer and speaker. 

Followed by EA and GA; GA is closer to MSA as hearer while EA is closer to MSA as speaker. 

The farthest to MSA is MA. However, the significance of the differences among some of those 

measurements is questionable. The next chapter reports a more fine-grained measure of linguistic 

variation with more detailed analysis of the reliability of the measure.  
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CHAPTER 4 

MEASURES OF LEXICAL AND PRONUNCIATION VARIATION BASED ON PHONE 

STRINGS 

In this chapter, I consider the phonemic representation to develop a measure of lexical 

variation and measure of pronunciation variation by comparing the IPA transcription of the 

words of the Swadesh list. Comparing all words of the Swadesh list results with a measure of 

lexical variation that takes into account pronunciation variation (Section 4.1). Comparing only 

pairs of cognate words results in a measure of pronunciation variation (Section 4.2). Each IPA 

symbol in the transcription string of a word is considered as an encapsulated unit; the phonetic 

differences are not taken into consideration. In Chapter 5, I look at the phonetic details at a 

deeper level of analysis. 

The Levenshtein distance algorithm (Levenshtein 1966) provides a measure of sequence 

similarity. It was invented to measure the similarity between two binary words ï a binary word is 

a sequence of 0s and 1s ï for the purposes of detecting distortion of binary data transmitted over 

a channel. In addition to computer science and engineering, this algorithm has been used in 

linguistics (Kessler 1995; Heeringa 2004; Serva and Petroni 2008, among others) and biology 

(Fitch and Margoliash 1967, among others) to measure the similarity between two sequences ï a 

transcription of a word is an instance of a sequence. This algorithm offers a framework for 

providing a measure of lexical variation that is more fine-grained than the measure of lexical 

variation discussed in the previous chapter. 

Many factors favor the use of the Levenshtein algorithm. First, it is applicable to any 

sequence, which makes it available to more than one field ï linguistics and biology are two 
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relevant examples. Second, it can solve the problem in a computationally efficient time O(m×n), 

where m and n stand for the length of the two strings. The major improvements on the efficiency 

of the Levenshtein algorithm are due to approximating the results of the algorithm rather than 

calculating it precisely.
13

 Such improvements of the efficiency of the algorithm are not necessary 

for linguistic research because the strings under consideration are short which makes any 

improvement in the efficiency negligible. Third, it is expandable through the dynamic design of 

the algorithm. There are two main dynamic aspects of the algorithm: it divides the string into 

substrings with the substrings being prefixes by default, and it also keeps the cost of the basic 

operations, to be detailed below, independent of the algorithm itself. This specific feature makes 

the algorithm applicable to much linguistic research, and I will also propose a new technique 

utilizing this feature of the algorithm later in this thesis. Fourth, it can be improved to find the 

best alignment between two strings. This is achieved by keeping track of the places of the 

insertions, deletions, and substitutions. 

The Levenshtein distance algorithm can be defined as a similarity metric that finds the 

minimum number of insertions, deletions, and/or substitutions needed to transform one string to 

another. Insertions, deletions and substitutions are called the basic operations of the algorithms. 

In its most trivial case the cost of each of these operations is set to one. It is also possible to set 

different costs, and changing the costs might have dramatic effects on the variation metric. In the 

current chapter, I am setting the cost of basic operations to one, while the next chapter proposes a 

model of sound representation from which the cost of the basic operations are derived. 

                                                 
13

 For more details see Navarro (2001), Ukkonen (1983), Ukkonen (1985), and Berghel and 

Roach (1996). 
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Kessler (1995) was among the first to use the Levenshtein distance to measure dialect 

distances. His main objective was to identify the grouping of the Irish Gaelic dialects and to 

determine the linguistic boundaries between them. Kessler used part of a linguistic atlas 

developed by Wagner (1958). This part contained a list of 51 concepts represented by 312 

different words or phrases. The concepts were presented in narrow transcription based on the 

IPA standard.  

Kessler ran different types of distance metrics that can be divided into two groups. The 

first group consisted of variation metrics on the lexical level based on the etymon identity and 

word identity, similar to what was discussed in Chapter 3. The second group of variation metrics 

considered the IPA transcription and calculated the distance based on the Levenshtein distance 

algorithm. Within the second group, Kessler introduced a method of phone string comparison. 

This method was based on the Levenshtein distance with the default cost of the basic operations 

where all insertions, deletions, and substitutions set to one. Another technique within the second 

group was to incorporate the phonetic features in the cost of the basic operations. This technique 

is called feature string comparison. 

Kessler compared the correlation of the variation metrics with the traditional approach of 

counting the number of isoglosses between dialect sites in a dialect map. The variation metrics 

based on the Levenshtein distance algorithm outperformed the etymon identity and word identity 

methods. Within the methods based on the Levenshtein distance algorithm, the phone string 

comparison method outperformed the methods that considered calculating phonetic differences. 

Kessler did not conclude that phonetic variation is irrelevant. Rather, he highlighted the 

importance of further developing methodologies that incorporate phonetic features in the 

variation metric. 



56 

 

Serva and Petroni (2008) introduced the idea of normalizing the Levenshtein distance 

between a pair of words over the length of the longer word. This helped ensure that all lexical 

items are contributing the same weight to the variation metric. The distance between a pair of 

languages would then be the average of the normalized distances between lexical items. The cost 

of insertions, deletions, and substitutions were all set to one. The normalization over the length 

of the longer word generated a distance metric that is less than one for any pair of words which 

in turn, entailed that the contribution of each lexical item is guaranteed to be less than or equal to 

one. In other words, all lexical items have the same potential to contribute to the variation metric, 

assigning weights to lexical items based on frequency was not considered in their study. 

Serva and Petroni (2008) used a list of 200 words from 50 languages. Some lists were 

missing some words, but the maximum number of missing words did not exceed 13. The words 

were transcribed in English orthography. Based on the known divergence times between two 

pairs of languages, Serva and Petroni retrieved the divergence times between all other pairs of 

languages and built a language tree that included the divergence times of all languages in 

consideration. Previous studies have also built language trees, such as Gray and Atkinson (2003) 

and Gray and Jordan (2000), but instead of using Levenshtein distance, they focused on the 

number of non-cognate words as a variation metric. 

The use of the Levenshtein distance algorithm has been widely accepted in Linguistics 

since Kessler (1995). The algorithm was further improved by Serva and Petroni (2008) and 

Wichmann et al. (2010) by introducing the idea of normalizing the distances. However, their 

improvements were found to be useful only when comparing distantly related languages. On the 

other hand, the Levenshtein distance algorithm can be improved by modifying the cost of 
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insertions, deletions, and substitutions based on sound relatedness or phonetic details. This is one 

of the main contributions of this thesis, as discussed in detail in chapter 5. 

4.1 Measure of lexical variation at the phonemic level 

I developed an algorithm to measure the lexical variation based on the IPA transcription 

of the words of the Swadesh list as transcribed in Appendix A. The algorithm uses the 

Levenshtein distance algorithm with one as the cost of the basic operations. For each Swadesh 

list item, the algorithm goes through the words provided by the speaker. For each of those words 

it finds the closest cognate word provided by the hearer for the same Swadesh list item. The 

assumption is that the hearer is matching the speakerôs word to the closest word in his/her 

lexicon, and for the communication to be successful both words should have the same meaning 

i.e. belong to the same Swadesh item. For example, a GA speaker trying to communicate the 

meaning of because (Swadesh item number 206) by using the word ӜaӊAn that exists in his/her 

lexicon with an EA speaker who has two cognates of this word in his/her lexicon ӜaӊAn and 

ӜalaӊAn. In such case, the EA hearer is interpreting the speakerôs word to the closest in his/her 

lexicon which is ӜaӊAn. For this pair of varieties the existence of the word ӜalaӊAn in the hearerôs 

variety does not contribute to the amount of linguistic variation. This component of algorithm 

also contribute to the asymmetry of the measure because on the other direction of the 

communication an EA speaker will also be using the word ӜalaӊAn which a GA hearer will 

match to ӜaӊAn which has a distance of two deletions. Following Serva and Petroni (2008), I 

normalize the output of the Levenshtein distance algorithm for each pair of words over the length 

of the longer word.
14

 Then, I normalize over the length of the list. These steps generate a distance 

                                                 
14

 Normalizing over the length of the words is an advantage computationally so that each word contributes equally 

in the computation; however, linguistically there may be reasons to consider developing an algorithm sensitive to 

word length in future research, such as the fact that there is no established theoretical definition of word Haspelmath 
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that is guaranteed to be less than or equal to one. This ensures that the results of the variation 

metric are comparable even if some varieties tend to have longer words or if some varieties have 

longer or shorter lists of pairs words. The algorithm is provided in Figure 4.1. 

The results of the measure of lexical variation based on phone strings align with the 

results of the lexical variation based on non-cognate words provided in the previous chapter. The 

closest varieties to each other are the geographically close varieties: EA, LA and GA. On the 

other hand, MA seems relatively more distant. The results of this measure also show the two 

patterns of asymmetry reported by the previous measure. First, members of the EA variety are 

understood by other varieties better than they understand them. Second, members of the LA 

variety are able to understand members of the other varieties better than the members of the other 

varieties can understand them. It would be interesting to see if those two patterns of asymmetry 

hold for the pronunciation variation metrics developed in Section 4.2 and chapter 5. The results 

are given in Table 4.1. 

 

                                                                                                                                                             
(2011), as well as situations where, for example, the average length of words in one variety is shorter than the 

average length of words in another and this might contribute to the overall difference  between these two varieties. 

Comment [M33]: start of results 
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Figure 4.1 Algorithm used to measure the lexical variation based on the phone strings of the words of the Swadesh list 

 

 

 

Table 4.1 Results of the lexical variation metric based on the phone string 

  

Hearer 

  

EA GA LA MA MSA 

S
p
e

a
ke

r 

EA  0.32 0.24 0.51 0.36 

GA 0.40  0.27 0.50 0.32 

LA 0.35 0.31  0.51 0.37 

MA 0.52 0.48 0.46  0.51 

MSA 0.38 0.28 0.31 0.52  
 

 

Reliability is an important factor of any measurement procedure. In this study, I provide 

two tests of the reliability of the algorithm in Figure 4.1. The first test aims to provide a visual 

realization of the stability of the measure given the size of the Swadesh list. In other words, is the 

size of the Swadesh list large enough to confidently determine the amount of lexical variation 

between the varieties under consideration? To answer this question, for each pair of varieties I 

int  Lexical_variation_metric_based_on_phone_string  

( speaker language as LangA, Hearer language as LangB)  

{   

 Distance_acc = 0  

 Word_count = 0  

 For each Swadesh_item in the SwadeshList  

 {  

  wordsA_list = list of words in LangA that belongs to Swadesh_item  

  words B_list = list of words in Lang B that belongs to Swadesh_item  

  For wordA in wordsA_list  

  {  

   Get wordB from wordsB_list that is closest to wordA based on Levenshtein dist.  

   d = Levenshtein( wordA,  wordB )  

   d = d / max(length( wordA, wordB ) )  

   Distance_acc = Distance_acc + d  

   Word_count = word_count + 1  

  }  

 }  

 Distance = Distance_acc / word_count  

 Return Distance  

}  
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ran a convergence exercise by starting with a list of one randomly selected item. I calculated the 

amount of variation according to the algorithm described Figure 4.1. I repeated the calculation 

after growing the list in steps of one randomly selected item. Figure 4.2 shows that the bigger the 

size of the list is, the more stable the amount of variation between varieties would be. Note that I 

show a subset of the pairs of varieties in this figure because of the limited space; other pairs of 

varieties show similar patterns. Based on the patters of convergence, we do not expect that 

increasing the size of the list to dramatically change the results.  

Figure 4.2 The convergence of the lexical variation metric based on the phone strings, X-axis shows the number of pairs of 
lexical items in the list. The number of items increases in steps of one. The Y-axis shows the amount of variation based on 
the algorithm described in Figure 4.1. This figure shows the pattern of convergence for a subset of the pairs of varieties; 

other pairs show a similar pattern.  
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The second test of reliability is based on statistical tools. Assuming that the Swadesh list 

is a randomly selected sample from the lexicon of the relevant varieties and that the amount of 

lexical variation between the pairs of words forms a normal distribution, we can use statistical 

tools to provide a confidence interval for each of the findings reported in Table 4.1. Table 4.2 

summarizes the range of 95% confidence intervals for all pairs of varieties. Based on the items of 

the Swadesh list there is 95% confidence that if we randomly selected similar sized list from the 

lexicon then the amount of lexical variation between the varieties would fall in the ranges 

reported in Table 4.2. Looking at the ranges of the amount of lexical variation between the local 

varieties and MSA with focusing on the ability of the members of local varieties to comprehend 

MSA where the speaker belongs to MSA and the hearer belongs to one of the local varieties 

(highlighted in Table 4.2). We see that MA is more distant to MSA than the other local varieties. 

Also, GA is closer to MSA than EA. It could be argued that LA is closer to MSA than EA and 

more distant than GA. However, the ranges overlap and different datasets could provide different 

results. This variation metric, as the confidence intervals show, did not provide distinction 

regarding which local variety is closer to MA, all intervals referring to MA as either speaker or 

hearer overlap. On the other hand, it shows that EA speakers are closer to LA hearers than GA 

hearers. This might imply that EA is understood by LA better than GA. Also, GA as speaker is 

closer to LA hearers than EA hearers. This also might imply that GA is understood by LA better 

than EA. The confidence intervals do not provide distinction about the closeness of EA and GA 

hearers to LA as speaker. 
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Table 4.2 The range of 95% confidence level of the lexical variation metric between the pairs of varieties 

Speaker-
Hearer 

Degrees of 
freedom 

Mean of 
normalized 

distance 

Range of 95% confidence interval  

EA-GA 257 0.32 0.28 - 0.36 

EA-LA 257 0.24 0.21 - 0.28 

EA-MA 257 0.51 0.47 - 0.54 

EA-MSA 257 0.36 0.32 - 0.4 

GA-EA 351 0.4 0.36 - 0.43 

GA-LA 351 0.27 0.24 - 0.3 

GA-MA 351 0.5 0.47 - 0.53 

GA-MSA 351 0.32 0.29 - 0.36 

LA-EA 394 0.35 0.32 - 0.39 

LA-GA 394 0.31 0.28 - 0.34 

LA-MA 394 0.51 0.48 - 0.55 

LA-MSA 394 0.37 0.35 - 0.4 

MA-EA 272 0.52 0.48 - 0.56 

MA-GA 272 0.48 0.44 - 0.52 

MA-LA 272 0.46 0.42 - 0.5 

MA-MSA 272 0.51 0.47 - 0.55 

MSA-EA 269 0.38 0.34 - 0.42 

MSA-GA 269 0.28 0.25 - 0.32 

MSA-LA 269 0.31 0.28 - 0.35 

MSA-MA 269 0.52 0.48 - 0.55 

 

 

4.2. Measure of Pronunciation variation at the phonemic level  

The lexical variation metric reported in the previous section is based on comparing the 

IPA transcription of pairs of both cognate and non-cognate words. It might be considered 

problematic to compare the pronunciation of unrelated non-cognate words. But in this case, it is 

legitimate to do so because the resulting measure estimates the lexical variation based on the 

phone string across all words, cognate or not, rather than purely pronunciation variation within 

cognates as calculated in this section. 
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In an effort to measure the amount of pronunciation variation, I developed an algorithm 

similar to the algorithm developed in the previous section except that the comparison of phone 

strings is limited to pairs of cognate words. This is achieved by incorporating the manually 

identified cognate words that were developed for the lexical variation metric as reported in 

Chapter 3. The developed algorithm is reported in Figure 4.3. The algorithm takes into 

consideration only pairs of words that are identified as cognates, it keeps track of the number of 

considered pairs of words to normalize over the length of the list. 

The results of the measure of pronunciation variation based on the phone strings are 

given in Table 4.3. Similar to the measures of lexical variation, we still see that MA is more 

distant to the other varieties than the other varieties among themselves. Moreover, we still see 

the pattern of asymmetry for EA speakers. The results show that they are understood by other 

speakers better than they understand them. The other pattern of asymmetry for LA speakers is 

also valid ï similar to the lexical variation metric reported in the previous section. Members of 

LA variety seem to perform as hearers better than speakers based on the results of the current 

pronunciation variation metric. Table 4.4 reports the degrees of freedom, margin of error, and the 

confidence interval for the amount of variation between the varieties according to the current 

measure of pronunciation variation. Comparing the amount of pronunciation variation between 

MSA speakers and hearers from the local varieties. We notice that GA is the closest followed by 

EA and LA. Similar to the lexical variation metric based on phone strings there is still an overlap 

for the 95% confidence intervals for MSA-LA and MSA-EA. Moreover, MA is still the farthest 

to MSA. As for the local varieties, members of the MA variety as hearers are closer to EA 

speakers than both GA and LA speakers, with no significant distinction between GA-MA and 

LA-MA. Moreover, there is no distinction for the amount of pronunciation variation based on 

Comment [M34]: start of results 
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phone strings between MA speakers and hearers from other local varieties. Similar to the lexical 

variation metric reported in the previous section, EA as speaker is closer to LA hearers than GA 

hearers and GA as speaker is closer to LA hearers than EA hearers. Also, there is no distinction 

about the closeness of EA and GA hearers to LA as speaker. Figure 4.4 summarizes the results of 

the lexical and pronunciation variation metrics based on the phone string. This plot is provided to 

make the comparison between the two variation metrics easier. It shows that the results of the 

pronunciation variation resemble the results obtained by the lexical variation metric based on the 

phone string. One area for improvement is to incorporate phonetic features in the measure of 

pronunciation variation, this will be discussed in Chapter 5. 

 

 

Figure 4.3 Algorithm used to measure the pronunciation variation based on phone strings of cognate words in the Swadesh 
list. 

 

 

int Pronunciation _variation_metric_based_on_phone_string  

( speaker language as LangA, Hearer language as LangB)  

{   

 Distance_acc = 0  

 Word_count = 0  

 For each Swadesh_item in the SwadeshList  

 {  

  wordsA_list = list of words in LangA that belongs to Swadesh_item  

  wordsB_list = list of words in LangB that belongs to Swadesh_item  

  For wordA in wordsA_list  

  {  

   Get wordB from wordsB_list that is closest to wordA based on Levenshtein dist.  

   If wordA and wordB are cognates  

   {  

    d = Levenshtein( wordA,  wordB )  

    d = d / max(length( wordA, wordB ) )  

    Distance_acc = Distance_acc + d  

    Word_count = word_count + 1  

   }  

  }  

 }  

 Distance = Distance_acc / word_count  

 Return Distance  

}  
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Table 4.3 Results of the pronunciation variation metric based on phone string 

  

Hearer 

  

EA GA LA MA MSA 

S
p
e

a
k
e

r 

EA  0.20 0.16 0.34 0.26 

GA 0.23  0.16 0.35 0.21 

LA 0.22 0.19  0.35 0.28 

MA 0.35 0.33 0.31  0.38 

MSA 0.25 0.17 0.22 0.37  
 

 

 

 

 
Table 4.4 95% confidence intervals for the measure of pronunciation variation between pairs of varieties. 

Speaker-
Hearer 

Degrees of 
freedom 

Mean of 
normalized 

distance 

Range of 95% confidence interval  

EA-GA 206 0.2 0.17 - 0.23 

EA-LA 226 0.17 0.14 - 0.19 

EA-MA 176 0.35 0.31 - 0.38 

EA-MSA 214 0.26 0.23 - 0.3 

GA-EA 258 0.24 0.21 - 0.27 

GA-LA 288 0.16 0.14 - 0.18 

GA-MA 241 0.35 0.32 - 0.38 

GA-MSA 282 0.21 0.18 - 0.23 

LA-EA 308 0.23 0.2 - 0.25 

LA-GA 314 0.19 0.17 - 0.21 

LA-MA 266 0.35 0.32 - 0.37 

LA-MSA 327 0.29 0.26 - 0.31 

MA-EA 183 0.36 0.32 - 0.4 

MA-GA 199 0.34 0.3 - 0.37 

MA-LA 202 0.31 0.28 - 0.35 

MA-MSA 204 0.39 0.35 - 0.42 

MSA-EA 205 0.25 0.22 - 0.29 

MSA-GA 218 0.17 0.15 - 0.2 

MSA-LA 228 0.22 0.2 - 0.25 

MSA-MA 188 0.37 0.33 - 0.4 
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Figure 4.4 Results of the lexical and pronunciation variation metrics based on the phone string. 
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CHAPTER 5 

MEASURE OF PRONUNCIATION  VARIATION BASED ON THE MATHEMATICAL 

REPRESENTATION OF SOUND 

This chapter covers the methodology I follow to develop the measures of pronunciation 

variation based on phonetic features. As mentioned in chapter 4, one of the favorable features of 

the Levenshtein distance algorithm is its ability to set variable costs for the basic operations ï 

insertions, deletions, and substitutions. This allows the incorporation of more linguistic details by 

setting the cost of the basic operations based on phonetic features. For example, the cost of 

replacing the phoneme /s/ by /z/ should be less than the cost of replacing /s/ by /k/, given that the 

first pair differs only in voicing while the latter involves more phonetic differences. 

As mentioned earlier, Kessler (1995) introduced the use of the Levenshtein distance 

algorithm to measure linguistic variation. He compared different approaches to compute the 

distances between Irish Gaelic dialects and compared these with the traditional method: counting 

isoglosses within a dialect map. Under one of the approaches, he used the Levenshtein distance 

algorithm with the default cost of one as the cost of the basic operations. Under another 

approach, he incorporated differences in phonetic features to calculate the cost of the basic 

operations. He used a set of twelve phonetic features ï nasality, stricture, laterality, articulator, 

glottis, place, palatalization, rounding, length, height, strength, and syllabicity. The values of 

each feature were set as discrete ordinal values between 0 and 1, with the exact values being 

arbitrary. Thus, the cost of replacing one phone with another was calculated as the average of the 

differences between all phonetic features representing those two sounds. Kessler found that the 

simpler phoneme-based method with the default cost of basic operations outperformed the 
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multivalued phonetic features method in comparison to the traditional method of counting the 

number of isoglosses between dialect sites in a dialect map. According to Kessler, the low 

performance may be due to the arbitrariness of assigning values to the phonetic features. 

Heeringa (2004) also used the Levenshtein distance algorithm to calculate the distance 

between dialects. His study covered a wide variety of ways to calculate the cost of the basic 

operations. They are divided into two basic categories. The first category is based on phonetic 

features and the second category is based on the acoustic representation. Within the first 

category, there are three phonetic feature systems derived from different studies ï one based on 

Vieregge et al. (1984) and Cucchiarini (1983), one based on Almeida and Braun (1986), and one 

based on Hoppenbrouwers and Hoppenbrouwers (2001). The cost of insertions and deletions is 

calculated based on the distance between the phoneme and silence while the cost of substitutions 

is calculated based on the distance between the pair of phonemes being substituted. The distance 

is derived from segment representation according to the corresponding phonetic representations 

(Heeringa 2004, p. 124). The methods using acoustic-based representations did not perform as 

well as the methods using phonetic features.  

The phonetic feature systems that Heeringa (2004) used were similar in principle to what 

Kessler developed in his 1995 study. They both represent phonetic segments by a set of phonetic 

features and each phonetic feature is associated with a set of ordinal numbers. The differences 

between them are related to the number of features and the ordinal values assigned to each 

phonetic feature to distinguish phonetic segments
15

.  

                                                 
15

 See Heeringa (2004) section 3.1 for more details.  
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What is counterintuitive is that both Kessler and Heeringa found that disregarding all 

phonetic details and using the default cost of one for the Levenshtein algorithmôs basic 

operations produced better results. This finding does not necessarily mean that discarding 

phonetics details is better but instead may derive from the way costs were assigned, as suggested 

by Kessler. Thus, such tools have to be designed carefully and should include information about 

the patterns of sound change that leads to variation. 

Gooskens (2007) compared the correlation between the lexical distance and the degree of 

mutual intelligibility with the correlation between the phonetic distance and the degree of mutual 

intelligibility.  Gooskens found that mutual intelligibility is more correlated with phonetic 

distance than with lexical distance. He used Heeringa (2004) as a basic phonetic distance metric.  

Kondrak (2003) incorporated a new idea in the Levenshtein distance algorithm. In 

addition to insertions, deletions and substitutions, he introduced the operation of expansion and 

compression, where a phonetic segment can be expanded or compressed for a specific cost. For 

each of the 13 phonetic features that he used, he specified a weight, or what he called the 

salience of the feature, and whether the feature can be applied to vowels and/or consonants. In 

contrast to the arbitrary nature of the ordinal values that Kessler assigned to his feature set, 

Kondrak assigned his ordinal values based on physical measurements where applicable. The 

physical measurements were taken from Ladefoged (1975). The weights assigned to the phonetic 

features were not based on any physical measurements. Kondrak compared his algorithm with 

others in terms of its ability to identify cognate words. The comparison included the methods 

from Kessler (1995), Covington (1996), Somers (1998), Gildea and Jurafsky (1996), Nerbonne 

and Heeringa (1997), and Oaks (2000). Kondrakôs algorithm outperformed them all. 

Comment [M35]: (Gooskens 2007 p 455) 

Comment [M36]: (Kondrak 2003 section 6) 
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Following this line of research by Kessler (1995) and others, I use the Levenshtein 

distance algorithm that these researchers have shown to be applicable to measuring 

pronunciation variation by incorporating phonetic details. The next step is to design a technique 

to calculate the cost of the basic operations independent of the researcherôs intuitions. To achieve 

this goal, we need to answer the following questions:  

1. How to derive the cost of substitutions based on phonetic features? How to set the cost of 

insertions and deletions?  

2. What are the sets of phonetic features to be incorporated in representing phones? How to 

assign ordinal numbers to values in the phonetic feature sets? How do we assign weights 

for the different phonetic features? 

3. How to tell if a set of values and weights of phonetic features are better or worse than 

another set of values and weights? How do we reach the optimal set of values and 

weights?  

 

 

5.1. The mathematical representation of sound 

This section formalizes a layer of computational representation of sound that is more 

abstract than the acoustic representation and more detailed than the phonemic representation. 

The necessity for the new layer of representation of sound comes from the necessity for an 

interface that communicates phonetic features that can derive a measure of phonetic similarity. 

Such an interface is useful in measuring pronunciation variation. At the more abstract level of 

sound representation, a phonemic based representation, each phoneme is considered as an entity 
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that hides the phonetic features and the fluctuations of the air pressure produced by a speaker 

uttering the sound. At the proposed layer of representation ï the mathematical representation ï 

phonetic features are encoded. At the more detailed level of representation, the acoustic 

representation, the fluctuations of the air pressure are recorded over time. Which does not 

provide a direct interface to communicate the phonetic features. 

As stated in the introduction of this thesis, one of the goals for this study is to enhance 

our understanding of the components of sounds. I am mainly concerned with addressing two 

questions:  (i) What are the key components of sound? And (ii) to what degree is each 

component playing a role in measuring the similarities and differences of pairs sounds? 

Answering these two questions is key for developing a measure of pronunciation variation that is 

more fine-grained than the measure of pronunciation variation based on phone strings (Chapter 

4). In addition to the importance of answering these questions to developing a measure of 

pronunciation variation, their answers might carry potential improvements to some NLP tasks 

(Chapter 6). Also, they help us provide an empirical framework to answer the theoretical 

questions about the components of sounds in phonetics and phonology. That said, the focus of 

this study is to develop a measure of pronunciation variation keeping in mind the additional 

applications for future research. 

The quantifiability of pronunciation variation between two sounds is key to the design of 

the mathematical representation of sound. If each phoneme is represented as a point in a space, 

then the amount of pronunciation variation between two phonemes is directly derived from the 

Hamming distance between the points.
16

 Within such a design, we need to find the dimensions of 

                                                 
16

 Hamming distance is more applicable than Euclidian distance: the former better reflects the changing phonetic 

features because the latter allows for diagonal shortcuts, increasingly limiting the effect of each individual 

dimension as the number of dimensions increases. Hamming distance measures the total number of steps on any axis 
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the space and the basic principle behind positioning points in the space. For mathematical 

simplicity, we assume that each phonetic feature is an independent factor; therefore each 

phonetic feature corresponds to a dimension in the space. 

5.1.1 The phonetic features for encoding in the mathematical representation of sound 

The mathematical representation of sound must encode a set of phonetic features that 

distinguishes all phonemes in the phonemic inventory of the varieties under consideration. But 

should not include any extraneous features for reasons of computational efficiency. Two 

frameworks in phonology inspired the set of features used here: the articulatory phonology 

framework highlights the importance of articulatory gestures, while autosegmental phonology 

highlights the importance of phonetic features. A purely articulatory model would complicate 

what could simply be viewed as a phonetic feature. For example, the emphatic feature in Arabic 

is expressed by set of articulatory gestures including backing the root of the tongue, sucalization 

of the body of the tongue, and slight rounding of the lips (Abunasser et al. 2011). The complex 

set of articulatory gestures can be represented as one phonetic feature. On the other hand a purely 

autosegmental model would fail to capture the relatedness of sound in terms of place of 

articulation and manner of articulation in a computationally effective way. Drawing from both 

phonological frameworks and keeping in mind computational simplicity and efficiency, I 

propose a hybrid model: each phoneme is represented by one main articulatory gesture, while 

secondary articulatory gestures are considered to produce phonetic features. The resulting model 

is a representation of sound that can be used computationally in an effective way. The main 

articulatory gesture is represented by a place of articulation and the degree of constriction at the 

                                                                                                                                                             
required to reach one point from the other. In other words, the distance is calculated as if a car were to drive around 

city blocks to reach its destination rather than as the direct path a bird would fly between the points. 
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place of articulation, which allows efficient comparison of different sounds for this core 

property. The phonetic features are voicing, nasality, laterality, trill/flap, emphaticness, lip 

rounding, affrication, gemination, and vowel length. A list of the phonemes for the varieties 

under consideration along with the details about the encoding is provided in Appendix B. The set 

of phonetic features being used here are derived from the IPA table and are the minimum 

features required to encode all sounds in the varieties under consideration; other languages might 

require additional or fewer features. Developing a universal set of features is most likely possible 

but not necessary at the current stage; furthermore, it increases the computational complexity of 

other components of the project (see Section 5.1.3).  

As mentioned earlier, each phoneme is represented as a point in a multidimensional space 

where the coordinates of the point specify the main articulatory gesture and the phonetic 

features. The first dimension specifies the place of articulation of the main articulatory gestures 

while the second dimension specifies its degree of constriction. The remaining dimensions 

correspond to the phonetic features, where each feature has its own dimension. The values for 

each phonetic feature are set to 0 or 1 depending on whether the feature is manifested in the 

sound or not. 

The values in the first dimension (the place of articulation of the main articulatory 

gesture) correspond to glottal, pharyngeal, uvular, velar, central-vowel, palatal, post-alveolar, 

alveolar, dental, labiodental, and bilabial, distributed in the range from 0 to 1 in increasing order. 

Without a phonetically motivated reason for assigning specific values to each intermediate place 

of articulation, I am proposing a technique that defines the values of the places of articulation as 

parameters of the representation of sound that will be represented by calculations specific to each 

pair of varieties (see section 5.1.3). 
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The second dimension defines the degree of constriction at the place of articulation of the 

main articulatory gesture. Following the same guidelines of the place of articulation, the smallest 

value for the degree of constriction corresponds to stops and the largest value corresponds to 

degree of constriction of the low vowel; the full range of values is as follows: stop (0), fricative, 

approximant, high-vowel, mid-vowel, low-vowel (1). The exact values corresponding to the 

degrees of constriction are parameters that are defined in the following subsections. In previous 

studies (Kondrak 2003; Heeringa 2004, among others), the consonant and vowel distinction is 

represented by two separate categories. However, in the current study, the distinction is derived 

by a gap between the two categories in the second dimension, which is parallel to how the 

distinction is physically realized (Stevens 2000) and also allows for the computational model to 

capture the similarity between consonants and vowels, which, for example, can assimilate to one 

another and otherwise interact.  

5.1.2 Parameters and weights of the mathematical representation of sound 

The set of phonetic features encoded in the mathematical representation of sound 

represent each phone as a point in a multidimensional space where the coordinates of the point 

encode the values of all features. The range of each dimension is 0 to 1. This design results in a 

computationally effective method to capture sound relatedness. The phonetic distance between a 

pair of phones can be calculated as the distance between the points representing them. On the 

other hand, such a design implies that all phonetic features have equal importance because they 

all have the same range (0 to 1). This problem is resolved by setting weights for all dimensions. 

The computational component that allows the dimensions to be scaled by the weights needs to be 

independent of the variation metric and independent of the researcherôs intuitions ï derived 

based on computational calculation. The scaling factors of the dimensions are referred to as 
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weights in the rest of this thesis. Before the Hamming distance between the points is calculated, 

the axis for each dimension is scaled based on the assigned weight.  

The first two dimensions are multivalued where places of articulation and degrees of 

constriction are expressed as the values of the relevant coordinates between 0 and 1. The exact 

values of the places of articulation and degrees of constriction are, similarly, to be determined 

independent from the variation metric and independent from the researcherôs intuitions. The 

coordinates that define the places of articulation and degrees of constriction are to be referred as 

the parameters of the mathematical representation of sound. However, we need to set default 

values of the parameters to be used as the starting point in the process of finding the ultimate 

values of the parameters for each pair of varieties. The default values of the parameters are 

assigned in a way that they are equally gapped. Table 5.1 reports the default values assigned to 

the parameters. 

Incorporating the mathematical representation of sound in the calculation of 

pronunciation variation using the Levenshtein distance algorithm entails that the cost of 

replacements is to be calculated based on the distance between the pair of points corresponding 

to the pair of phones in question. The question that arises in this context is: What is the cost of 

the other basic operations, insertion and deletion (to be referred as indel
17

)? In the new set up that 

involves the new method to calculate the cost of replacements, keeping the cost of indels to the 

default cost is not plausible. It might seem plausible to set the cost of indels to the maximum cost 

of replacement (or a fraction thereof) which is defined as the most distinct pair of phonemes as 

measured by the distance between the most distant points. However, I do not believe there is a 

convincing theoretical or logical motivation for such a decision. A computationally feasible and 

                                                 
17

 The term indel has been used by Kondrak (2003) and in studies in molecular biology.  
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logically plausible solution is to deal with the problem of calculating the cost of indels in a 

similar method to that of the weights and parameters. The following section discusses the 

computational component that calculates the weights, the parameters, and the cost of indels.  

 

Table 5.1: Default values of the parameters 

Dimension Parameter name Default value 

p
la

c
e

 o
f 
a

rt
ic

u
la

ti
o

n 

Glottal 0 

Pharyngeal 0.1 

Uvular 0.2 

Velar 0.3 

Central vowel 0.4 

Palatal 0.5 

Postalveolar 0.6 

Alveolar 0.7 

Dental 0.8 

Labiodental 0.9 

Bilabial 1 

D
e

g
re

e
 o

f 
c
o

n
s
tr

ic
ti
o

n 

Stop 0 

Fricative 0.2 

Approximant 0.4 

High vowel 0.6 

Mid vowel 0.8 

Low vowel 1 
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5.1.3 Optimizing weights, parameters, and cost of indels based on their ability to identify 

cognates 

This section reports on a computational component that sets values to the Weights, the 

Parameters, and cost of Indels, to be referred as WPIs. Kondrak (2009) used a phonetic similarity 

algorithm to identify cognate words. He compared several phonetic similarity metrics based on 

their ability to identify cognate words. The intuitive assumption is that a better phonetic 

similarity metric would result with a better cognate word identification algorithm. Following the 

same intuitive assumption, a better set of WPIs leads to better identification of cognate words for 

a pair of languages. I find the optimal WPIs based on their ability to identify cognates (as defined 

in Chapter 3). We need a computational component that given two WPIs can identify which one 

is better for a pair of varieties. Based on such computational component we optimize for a better 

set of WPIs. 

The best set of WPIs is the set that is able to identify cognates the most; and hence 

separates cognates and non-cognates the most. In our case, given the Swadesh list for a pair of 

varieties, the distances between pairs of cognate words form one distribution, and the distances 

between non-cognate words form another distribution. A good set of WPIs would result with an 

average distance between non-cognate words to be higher than the average distance between 

cognate words. Moreover, the more distant the averages are the better the WPIs would be. The 

distance between the averages of the distributions and the dispersion of each distribution are the 

key factors that determine the separation of the two distributions. Thus, the more multiples of 

standard deviations that separate the averages of the two distributions, the better the set of WPIs 

is. The formula can be derived as: 
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- Given a list of words, the Swadesh list on our case, for a pair of varieties.  

o A: The distribution of the distances between cognate words. 

o B: The distribution of the distances between non-cognate words. 

o p: a point between A and B that satisfies both 5.1 and 5.2 

o x: the multiplication factor of the standard deviation used in equations 5.1, 5.2, 

and 5.3; ὼ is referred to as the separation factor 

o ὴ ὥὺὩὶὥὫὩὃ ὼ ίὸὨὃ     (5.1) 

o ὴ ὥὺὩὶὥὫὩὄ ὼ ίὸὨὄ      (5.2) 

- Solving for ὼ yields 

o ὼ ὥὺὩὶὥὫὩὄ ὥὺὩὶὥὩὃ ίὸὨὃ ίὸὨὦ   (5.3) 

 

Optimizing for a higher separation factor by setting different weights for each pair of 

varieties could potentially result with optimal WPIs for each pair of varieties. Such an 

optimization problem can be solved by implementing a hill climbing algorithm. The hill 

climbing algorithm consists of repeating two steps. The first step is to start with an arbitrary 

solution. The second step is to repeatedly improve the solution by finding a better neighboring 

solution. The process of trying to find a better neighboring solution is repeated until the 

improvement of the solution fails. Similarly, I start with randomly selected weights, a randomly 

selected cost of indels, and default values for the parameters. Then the value of each component 

of the WPIs is increased and decreased by a predefined step size and the WPIs are evaluated 

each time by calculating the separation factor. Then we select the neighboring WPIs that 

produced the highest increase in the separation factor. The process of trying to find better 

neighboring set of WPIs is repeated until the algorithm fails to increase the separation factor. 
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After this point, the last WPIs are considered to produce a local maximum. Following this 

algorithm, a local maximum is found for each randomly selected WPIs. After finding a 

reasonable number of local maxima or repetitions of local maxima the algorithm stops and 

assumes that the best local maxima is a global maxima and the corresponding set of WPIs are the 

optimal set of WPIs. 

The high computational complexity of the nature of the problem highlights three 

considerations to keep in mind in order to make it computationally feasible. The first is the step 

size. A larger step size is computationally less expensive but might leads to a premature local 

maximum while a smaller step size could be unrealistically computationally expensive. Given 

the computational resources and after investigating different values and results, the value of the 

step size is set to 0.1 in an initial stage. Once a local maximum is found, the step size is set to 

0.01 and the process repeats one final time. The second consideration is the range from which the 

random values of the weights and cost of indels are selected. The range is set to the values 

between 0 and 5 in steps of 0.1. There are 11 weights and 1 value for the cost of indels, thus in 

total 12 variables to assign random starting values. For each variable, there are 51 possible points 

to start with, so the total number of possible values is 51
12

. The third consideration is when to 

assume that we have found enough number of local maxima and the largest local maxima 

generates the optimal WPIs? Ideally, we want to be as sure as possible that we have exhausted 

most of the local maxima and most likely, the global maximum is one of them. The standard 

procedure for hill climbing algorithms is to start with a pre-specified number of randomly 

selected starting points, and assume that the best maxima correspond to the optimal result. 

However, I could not find such a number that is computationally feasible and effective for all 

pairs of varieties. Instead, the algorithm is designed to repeat the process of starting with 
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randomly selected starting points and find their relevant local maxima until it has five repeated 

local maxima. Then the algorithm stops and assumes that the global maximum is the best 

maximum found and the corresponding set of WPIs is the optimal solution. 

One of the challenges to the algorithm is having the starting, randomly-selected values 

begin in a plateau ï increasing/decreasing at least one of the values of the starting WPIs will not 

have any effect on the separation factor. This problem is solved by decreasing the value of each 

weight, one at a time, as long as the separation factor is not decreasing. This brings the function 

to an edge of an incline where it may begin climbing and increase the separation factor. The 

algorithm used to calculate the WPIs is shown in Figure 5.1. 

Figure 5.2 illustrates the calculation of the separation factor for a pair of varieties (EA 

and GA). The x-axis marks the word number and the y-axis marks the distance between pairs of 

words. The distances between cognate words are marked by pluses and the distances between 

non-cognate words are marked by circles. The two dotted horizontal lines mark the averages of 

the two distributions. The two vertical lines mark one standard deviation below and one standard 

deviation above the average for each distribution. The point p is marked by the solid horizontal 

line. Figure 5.2 (A) shows the separation of the two distributions given the starting randomly 

selected values. Figure 5.2 (B) shows the separation after the step that avoids having the WPIs in 

a plateau. Figure 5.2 (C) shows the first change in the weights in an effort to increase the 

separation factor, there is a step up for the nasal and emphatic features and a stem down for 

affricate feature. Next, the algorithm adjusts the places of articulation and degrees of 

constriction. For this pair of varieties and the initial set of WPIs, the algorithm need 53 steps to 

find a local maxima, the WPIs of the local maxima is given in Figure 5.2 (D).  
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Figure 5.1 Algorithm used to optimize the WPIs 
 

Pseudocode Levenshtein(wpi_se t, wordA, wordB)  

{  

 return the distance between wordA and wordB following the Levenshtein distance algorithm 

by setting the cost of the basic operations using the given wpi_set  

}  

 

Pseudocode separation_factor(wpi_set, LangA, LangB)  

{  

 cognate_list = []  

 non_cognate_list = []  

 For each Swadesh_item in the SwadeshList  

 {  

  wordsA_list = words in LangA that belongs to Swadesh_item  

  wordsB_list = words in LangB that belongs to Swadesh_item  

  For wordA in wordsA_list  

  {  

   For word B in words B_list  

   {  

    d = Levenshtein( wpi_set, wordA, wordB)  

    d = d / max(length(wordA ) , length( wordB))  

    If wordA and wordB are cognates  

     cognate_list .add(d)  

    else  

     non_cognate_list.add(d)  

   }  

  }  

 }  

 return (average(non_cognate_list) - average(cognate_list))  

    / (std(cognate_list)+std(non_cognate_list))  

}  

 

Pseudocode optimize_parameters(wpi_set, LangA, LangB)  

{  

 do 

 {  

  sep_wpi_list = []  

  base_sep_factor = separation_factor(wpi_set, LangA, LangB)  

  [variables,parameters] = wpi_set  

  For parameter_dim in  

   [ parameters.places_of_articulation , parameters.degrees_of_constriction ]  

  {  

   for parameter in parameter_dim  

   {  

    L = list of all possible values of parameter preserving ordinality  

    For x in L  

    {  

     new_wpi_set=  wpi_set with the value of corresponding parameter set to x  

     sep_factor = separation_factor( new_wpi_set, LangA, LangB)  

     sep_wpi_list.append([sep_factor, new_wpi_set])   

    }  

   }  

  }  

  sep_factor , new_wpi_set  = the row in sep_wpi_list that has the largest sep_factor  

  if sep_factor > base_sep_factor  

   wpi_set = new_wpi_set  

 }while( sep_factor > base_sep_factor )  

 return wpi_set  

}  

 

 

Pseudocode get_initial_WPIs_set()  

{  

 variables = get 12 random values in the range 0, 0.1, 0.2 é 5 

 parameters.places_of_articulation = default places of articulation  

 parameters.degrees_of_constriction = default degrees of constriction  

 wpi_set = [variables,parameters]  

 return wpi_set  

}  
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Figure 5.1 (cont.) Algorithm used to optimize the WPIs 
 

  

Pseudocode climb_the_hill(wpi_set, step_size, LangA, LangB)  

{  

 do 

 {  

  sep_wpi_list = []  

  base_ sep_factor = separation_factor(wpi_set, LangA, LangB)  

  [variables,parameters] = wpi_set  

  L = list of all neighboring variables  

  For x in L  

  {  

   new_wpi_set  = [x ,parameters ]  

   sep_factor = separation_factor( new_wpi_set, LangA, LangB)  

   sep_wpi_list.append( [sep_factor, new_wpi_set])  

  }  

  sep_factor , new_wpi_set  = the row in sep_wpi_list that has the largest sep_factor  

  if sep_factor > base_sep_factor  

   wpi_set = new_wpi_set  

  wpi_set = optimize_parameters( wpi_set ,  LangA, LangB )  

  sep_factor = separation_ factor(wpi_set, LangA, LangB)  

 }while(sep_factor > base_sep_factor )  

 return wpi_set  

}  

 

Pseudocode move_down_variable s(wpi_set , step_size , LangA, LangB )  

{  

 do 

 {  

  moved_down = false  

  [variables,parameters] = wpi_set  

  For x in variables  

  {  

   while ( x >= step_size )  

   {  

    x - = step_size  

    new_wpi_set = wpi_set with the value of corresponding variable  set to x  

    If separation_factor( new_wpi_set , LangA, LangB )  

     >= separation_factor( wpi_set , LangA, LangB )  

    {  

     wpi_set  = new_wpi_set  

     moved_down = true  

    }  

   }  

  }  

 }  while (moved_down)  

 return wpi_set  

}  

 

Pseudocode OptimizeWPIs(LangA, LangB)  

{  

 wpi_list = []  

 number_of_seen_wpis = 0  

 while( number_of_seen_wpis < 5)  

 {  

  wpi_set = get_initial_WPIs_set()  

  for step_size in [0.1, 0.01]  

  {  

    wpi_set = move_down_variable s(wpi_set , step_size, LangA, LangB )  

   wpi_set = climb_the_hill( wpi_set, step_size , LangA, LangB )  

  }  

  If wpi_set in wpi_list  

   number_of_seen_wpis += 1 

  else  

   wpi_list.append(wpi_set)  

 }  

 return wpi_set  from wpi_list that generates the largest separation factor  

}  
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The optimal WPIs are calculated twice for each pair of varieties. The first time, the 

vowels are represented categorically based on the phonetic transcription. In this case long vowels 

are in three categories and short vowels in four; in the case of short vowels, there is schwa 

(Section 5.2). The second time, the vowels are represented based on the values derived from the 

formant frequencies reported in Section 2.8 (Section 5.3).  

 

5.2. Using the mathematical representation of sound to develop a measure of pronunciation 

variation 

Following the algorithm presented in Figure 5.1, I calculate the WPIs for each pair of 

varieties. I run the procedure twice for each pair of varieties to show the consistency of the 

algorithm in finding the optimal WPIs. Most values are very close to each other if not exactly the 

same. The reliability of the algorithm could be enhanced by increasing the number of repeated 

local maxima required to find the optimal WPIs to a value bigger than five or by having a 

smaller step size. However, the achieved accuracy is considered satisfactory given the 

computational resources in hand. The optimal WPIs for all pairs of varieties are provided in 

Table 5.2. Then, the optimal WPIs are considered those that generated a bigger separation factor. 

See Section 6.2  and Section 6.3 for issues related to the values in this table. 

The amount of pronunciation variation is calculated based on the algorithm provided in 

Figure 4.3 with the cost of each basic operation in the Levenshtein distance algorithm are 

calculated based on the optimal WPIs for the relevant pair of varieties. Table 5.3 summarizes the 

results. The closest varieties to each other are the geographically close varieties: LA, GA, and 

EA. MA is relatively more distant both geographically and based on the current measure of 

Comment [M37]: start of results 
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pronunciation variation. Similar to the previous measures, we still see the two patterns of 

asymmetry. First, the amount of variation between EA speakers and hearers from the other 

varieties are less than the amount of variation between EA hearers and corresponding speakers 

from the other varieties. Second, the amount of variation between LA hearers and speakers from 

other varieties are less than the amount of variation between LA speakers and hearers from the 

corresponding varieties.  

Table 5.4 reports the 95% confidence intervals for the amounts of pronunciation variation 

reported in Table 5.3. The highlighted rows show the intervals for the amount of variation 

between MSA speakers and hearers from local varieties. As mentioned earlier it is more 

important to show the ability of the members of local varieties to comprehend MSA. GA hearers 

appear to be the closest to MSA speakers, followed by EA then LA. However, the 95% 

confidence intervals for those pairs of varieties overlap ï the first three highlighted rows in Table 

5.4. This means that we cannot confidently determine which of the three varieties is the closest to 

MSA based of the measure of pronunciation variation based on the mathematical representation 

of sound. On the other hand, there is no overlap for the interval corresponding to MSA-MA with 

the other intervals for the formerly mentioned local varieties. So, the results of the current 

measure show that GA, EA, and LA are all closer to MSA than MA. 

The closest local variety to MA is EA considering both directions of communication ï 

MA speaker to EA hearer and EA speaker to MA hearer. On the other hand, we cannot 

distinguish the closeness of LA and GA to MA due to the overlap of the relevant confidence 

intervals. Similar to the previous measure, EA as speaker is closer to a hearer of LA than a hearer 

of GA. Also, GA as speaker is closer to a hearer of LA than a hearer of EA. As for LA speakers, 

there is no distinction regarding the closeness of EA and GA hearers. 
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Figure 5.3 summarizes the results for the lexical, pronunciation based on phone strings, 

and pronunciation based on mathematical representation methodologies. This plot is provided to 

make the comparison of the three variation metrics easier for the reader. It is not valid to 

compare the values from different variation metrics directly, but comparing the relative values 

within each metric is informative.  
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Table 5.3 Results of the measure of pronunciation variation based on the mathematical representation of sound 

  

Hearer 

  

EA GA LA MA MSA 

S
p
e

a
k
e

r 

EA  0.127 0.080 0.190 0.160 

GA 0.161  0.101 0.309 0.161 

LA 0.131 0.135  0.333 0.226 

MA 0.208 0.291 0.295  0.362 

MSA 0.154 0.134 0.174 0.335  
 

 

 

 

Table 5.4 95% confidence intervals for the measure of pronunciation variation  based on the mathematical representation 

of sound 

Speaker-
Hearer 

Degrees of 
freedom 

Mean of 
normalized 

distance 

Range of 95% confidence interval  

EA-GA 206 0.127 0.105 - 0.15 

EA-LA 226 0.08 0.064 - 0.096 

EA-MA 176 0.19 0.162 - 0.217 

EA-MSA 214 0.16 0.131 - 0.19 

GA-EA 258 0.161 0.136 - 0.185 

GA-LA 288 0.101 0.081 - 0.122 

GA-MA 241 0.309 0.275 - 0.343 

GA-MSA 282 0.161 0.138 - 0.185 

LA-EA 308 0.131 0.112 - 0.15 

LA-GA 314 0.135 0.112 - 0.158 

LA-MA 266 0.333 0.299 - 0.366 

LA-MSA 327 0.226 0.202 - 0.25 

MA-EA 183 0.208 0.179 - 0.237 

MA-GA 199 0.291 0.254 - 0.327 

MA-LA 202 0.295 0.256 - 0.333 

MA-MSA 204 0.362 0.322 - 0.401 

MSA-EA 205 0.154 0.124 - 0.183 

MSA-GA 218 0.134 0.109 - 0.16 

MSA-LA 228 0.174 0.147 - 0.2 

MSA-MA 188 0.335 0.298 - 0.373 
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Figure 5.3 Comparison of three variation metrics. 

 

 

 

5.3. Using the mathematical representation of sound to develop a measure of pronunciation 

based on the non-categorical representation of vowels 

In this section, the amount of pronunciation variation is calculated based on the WPIs 

calculated following the procedure illustrated in Section 5.1 with the vowels represented by two 

numbers derived from the formant frequencies as described in Section 2.8. Figure 5.4 shows the 

distribution of coordinates of the vowels in the first two dimensions of the mathematical 

representation of sound. The circles show one standard deviation around the mean of the values 

of the two coordinates representing the vowel categories as calculated in Section 2.8; solid 

circles correspond to long vowels and dashed circles correspond to short vowels. The place of 

articulation of the main articulatory gesture of the vowel is calculated as (velar + ( (palatal -

velar)*value  derived from F2 ) ) . Similarly, the degree of constriction is calculated as 

(high_vowel + ( ( low_vowel ï high_vowel)* value derived from the F1 ) ) . Keep in 

mind that velar , palatal , high_vowel , and low_vowel  correspond to parameters of the 

mathematical representation of sound as discussed in Section 5.1.  

0

0.1

0.2

0.3

0.4

0.5

0.6

E
G

Y
-G

L
F

E
G

Y
-L

E
V

E
G

Y
-M

O
R

E
G

Y
-M

S
A

G
L

F
-E

G
Y

G
L

F
-L

E
V

G
L

F
-M

O
R

G
L

F
-M

S
A

L
E

V
-E

G
Y

L
E

V
-G

L
F

L
E

V
-M

O
R

L
E

V
-M

S
A

M
O

R
-E

G
Y

M
O

R
-G

L
F

M
O

R
-L

E
V

M
O

R
-M

S
A

M
S

A
-E

G
Y

M
S

A
-G

L
F

M
S

A
-L

E
V

M
S

A
-M

O
R

Lexical

Phonemic

Features



90 

 

Figure 5.4 Distribution of vowels indicating relevant places of articulation and degrees of constriction to factor the vowels 
into the mathematical representation of sound. 

 

 

  


