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Abstract

In this study, a transfer learning technique is presented for cross-

lingual speech recognition in an adverse scenario where there

are no natively transcribed transcriptions in the target language.

The transcriptions that are available during training are tran-

scribed by crowd workers who neither speak nor have any fa-

miliarity with the target language. Hence, such transcriptions

are likely to be inaccurate. Training a deep neural network

(DNN) in such a scenario is challenging; previously reported

results have described DNN error rates exceeding the error rate

of an adapted Gaussian Mixture Model (GMM). This paper in-

vestigates multi-task learning techniques using deep neural net-

works which are suitable for this scenario. We report, for the

first time, absolute improvement in phone error rates (PER) in

the range 1.3-6.2% over GMMs adapted to probabilistic tran-

scriptions. Results are reported for Swahili, Hungarian, and

Mandarin.

Index Terms: cross-lingual speech recognition, transfer learn-

ing, deep neural networks, probabilistic transcription

1. Introduction
We explore training deep neural networks using probabilistic

transcripts (PT) but no deterministic transcripts (DT) in the tar-

get language. DT means the transcript was collected from na-

tive speakers of a language. Since there is no ambiguity in such

ground truth labels, the labels are deterministic in nature. The

labels are then converted to IPA phone symbols. As an exam-

ple the DT for the word “cat” can be represented as shown in

Fig. 1 with each arc representing a symbol and a probability

value. Here, each symbol occurs with probability 1.0. On the

other hand, PT means that the transcript was probabilistic or

ambiguous in nature. Such transcripts frequently occur, for ex-

ample, when collected from crowd workers who do not speak

the language they are transcribing [1]. Usually a training audio

clip (in some language L) is presented to a set of crowd work-

ers who neither speak L nor have any familiarity with it. Thus,

due to their lack of knowledge about L, the labels provided by

such workers are inconsistent, i.e., a given segment of speech

can be transcribed by a variety of labels. This inconsistency can

be modeled as a probability mass function (pmf) over the set of

labels transcribed by crowd workers. Such a pmf can be graph-

ically represented by a confusion network as shown in Fig. 2.

Unlike the DT in Fig. 1 which has a single sequence of sym-

bols, the PT has 3×4×3×4 = 144 possible sequences, one of

which could be the right sequence. In this case, it is “k æ ∅ t”.

Collecting and processing PTs for audio data in the tar-

get language L from crowd workers who do not understand

L is called mismatched crowdsourcing [1]. The language L is

the language we want to recognize using an automatic speech

recognition (ASR) system trained using PTs. The objective of

this study is to train a deep neural network using PTs in lan-

guage L while transfering knowledge from DTs in other lan-

guages excluding L. An ASR system trained this way is partic-

ularly useful for low-resourced languages where it is difficult to

find native transcribers in L but easy to find non-native crowd

workers through online sources like Amazon’s Mechanical Turk

or Upwork. The following five low resource conditions outine

the nature of the data used in this study:

• PTs in Target Language: PTs in the target language L are

collected from crowd workers who do not speak L.
• PTs are limited: The amount of PTs available from the crowd

workers is limited to only 40 minutes of audio.
• Zero DT in Target Language: There are no DTs in L.
• DTs only in Source Languages: There are DTs from 5 other

languages ( �= L).
• DTs are limited: The DTs are worth about 40 minutes of

audio per language. Hence, the total amount of multilin-

gual DTs available for training is ≈ 3.3 hours. (40 min-

utes/language × 5 languages = 200 minutes)

• Unsupervised data in Target Language: There are at least 5

hours of unlabeled data in L.

The objective of this paper is to explore DNN techniques that

can adapt using PTs. DNNs have been used in cross-lingual

speech recognition either through tandem or hybrid approaches.

In tandem approaches, either a) posteriors of the DNNs are

Gaussianized [2, 3], or b) the outputs of an intermediate layer

(bottleneck extractions) [4, 5], followed by dimensionality re-

duction using principal component analysis (PCA) are used as

distinctive features for training GMM-HMM classifiers. In the

class of hybrid approaches, a front-end GMM-HMM system

generates alignments (usually shared context-dependent GMM

states known as senones) which are used to train DNNs. DNNs

have also been earlier used for knowledge transfer with zero la-

beled training data using an “open-target MLP” [6] or by adap-

tation using self-training and unsupervised pre-training [7]. Pre-

viously presented results [8] showed that DNNs can be adapted

to PTs with resulting error rates exceeding or almost same as

those of adapted GMMs. This paper is the first to report DNN

adaptation to PTs with error rates consistently below those of

adapted GMMs.

2. Algorithm

2.1. Mismatched crowdsourcing

We briefly review mismatched crowdsourcing which is used to

post-process raw transcriptions obtained from crowd workers.

A single audio file is transcribed by multiple workers since no
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[k]/1.0 [æ]/1.0 [t]/1.0

Figure 1: A deterministic transcription (DT) for the word cat.

[k]/0.5

[g]/0.4

∅/0.1

[a]/0.45

[5]/0.35

[æ]/0.10

[E]/0.10

[p]/0.3

[a]/0.2

∅/0.5

[p]/0.3

[k]/0.3

[t]/0.2

[k]/0.2

Figure 2: A probabilistic transcription (PT) for the word cat.

individual worker is entirely reliable. First the letters in the tran-

scripts are converted to IPA symbols. To remove the most er-

roneous transcripts, each symbol in a transcript was assigned a

score which is the sum of context independent agreements and

context dependent agreements with other transcrips. Following

this, the multiple transcripts are merged using a ROVER tech-

nique applied on equivalence classes (symbols belonging to the

same class). More details of these steps are given in [1].

2.2. DNN Training using Probabilistic Transcripts

The focus of this paper is to study DNN techniques that can

adapt to the target language given the five low resource condi-

tions outlined in Section 1. At this point, assume that frame

level alignments from a HMM are available as ground truth la-

bels for DNN training. Since these are alignments based on PTs

and not DTs, the ground labels are soft rather than 1-hot. From

the illustrated example, the ground truth labels for a frame rep-

resenting “æ” in the word “cat” could be a vector of soft labels

such as [0.35 a, 0.45 5, 0.1 æ, 0.1 E] instead of the 1-hot label

[1.0 æ].

One possibility is to ignore the soft labels in PTs since they

are noisy and instead use a self-training method. Here, a trained

ASR system decodes the unsupervised data and then uses the

confidence sampled decoded labels to retrain itself. This was

earlier used in monolingual [9] and multilingual scenarios [7].

In [7], the multilingual ASR system was used to decode the un-

supervised data in an unseen target language and then retrained

using the decoded labels to adapt to the target language. How-

ever, this method does not leverage the available PTs.

Another possibility is to use the conventional approach to

adapt a multilingual DNN to a new language. This is achieved

by retaining the shared hidden layers (SHLs) [10] of an exist-

ing multilingual DNN and then replace the multilingual trained

softmax layer with a new softmax layer which is fine tuned us-

ing the labels of only the target language [11]. In the current

scenario, there are no DTs. Hence, an obvious step is to use

the PTs to fine tune the softmax layer. This is illustrated as

the DNN-1 system in Fig. 3(a). Since cross-entropy training of

DNN attempts to minimize the Kullback-Leibler divergence be-

tween the distributions of ground truth labels (which are noisy

for PTs) and DNN posterior outputs, the posteriors simply learn

the noisy distribution of the PTs. This degrades the performance

of the DNN, sometimes even worse than a GMM-HMM sys-

tem, as will be reflected later in the experiments in Section 3.5.

This also reaffirms the fact that DNNs do not generalize well

if the training and test data are generated from two different

joint distributions of acoustic data and labels. In [12], this was

shown for the case when a DNN was trained using wideband

data but tested on narrowband data. In our case, the training

data are based on PT distributed labels whereas during test time

the network outputs are compared against DT distributed labels

Figure 3: DNN adaptation to probabilistic transcripts (PT).

to measure accuracy.

To take advantage of the PTs while at the same time alle-

viate the effect of noisy labels, we explore another DNN based

on multi-task learning with multiple softmax layers [13]. Here,

each layer is trained using a different set of transcripts. The

first softmax layer is trained using PTs of the target language

whereas the second layer is trained on multilingual DTs of the

source languages. This is illustrated as the DNN-2 system in

Fig. 3(b). There could be a third softmax layer trained using

self-training transcripts (ST) generated by decoding unsuper-

vised data in the target language. This is the DNN-3 system

in Fig. 3(c). During test time, only the PT softmax layer is re-

tained for decoding while discarding the other softmax layers.

In our experiments, all the three layers had the same set of mul-

tilingual senones. The senones in the PT softmax layer could as

well be adjusted only to the target language as the PT labels are

monolingual.

Our motivation for using multiple softmax layers stems

from encouraging results obtained in previous studies for multi-

lingual training [14],[15], [10] and for multi-task learning [13].

In this work, our conjecture is that simultaneous training of PTs

along with DTs offers multiple advantages. We intend to do

more experiments to verify these advantages. a) First, the spu-

rious or incorrect error gradients back propagated by the noisy

PT labels fed to the PT softmax layer are partially corrected

by the true error gradients back propagated by the high qual-

ity DT labels fed to the DT softmax layer. Therefore, due to

strong supervision of highly reliable DT labels, the net result

is an improved non-linear transformation learned by the SHLs

and hence better feature separation. This advantage is clearly

lost with the single softmax DNN-1 system trained using PTs

since the training steps are inherently sequential in nature - first

train using multilingual DTs and then fine tune using monolin-

gual PTs. The noise introduced by PTs in the SHLs thus cannot

be corrected. b) Since the output nodes of the DNN have one-

to-one correspondence with a multilingual senone decision tree,

the outputs nodes of each softmax layer represent multilingual

senones and hence act as universal softmax layers. By exclu-

sively training the PTs in the first softmax layer, we train only

those softmax weights which are connected to nodes represent-

ing senones in the target language. The weights for the other

senones remain untrained. This is expected to reduce the en-

tropy of the output activation vectors. In addition, if the quality

of the PTs improves, it will further lead to improved softmax

weights. c) Unlike [14] where each language was assigned its

own softmax layer, we assign all source languages with DTs to

only one softmax layer since the primary role of DTs is to fix

SHLs. This reduces the complexity of the network structure.
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3. Experiments and Results
In this section, we explore the effect of the three DNNs dis-

cussed in Section 2.2 in terms of PER.

3.1. Data

Multilingual audio files were obtained from the Special Broad-

casting Service (SBS) network which publishes multilingual ra-

dio podcasts in Australia. These data include over 1000 hours

of speech in 68 languages. The following languages were used

in our experiments - Swahili (swh), Hungarian (hun), Cantonese

(yue), Mandarin (cmn), Arabic (arb), Urdu (urd). Out of these,

the first three were used as target languages. The utterances

were short in length (5s) which makes it easy for crowd work-

ers to annotate the utterances since they did not understand the

utterance language. Each utterance was transcribed by 10 dis-

tinct Turkers and merged using [1] to create the PTs. More

than 2500 Turkers participated in these tasks, with roughly 30%

of them claiming to know only English. The remaining Turk-

ers claimed knowing other languages such as Spanish, French,

German, Japanese, and Chinese.

Since English was the most common language among

crowd workers, they were asked to annotate the sounds us-

ing English letters. The sequence of letters were not meant to

be meaningful English words or sentences since this would be

detrimental to the final performance. The important criterion

was that the annotated letters represent sounds they heard from

the utterances as if they were listening to non-sense syllables.

The same set of utterances were labeled by native transcribers

in the utterance language which constitute the DTs. This was

required during ASR evaluations.

PTs and DTs, worth about 1 hour of audio, were collected

from crowd workers and native transcribers respectively. The

training set consists of a) about 40 minutes of PTs in the tar-

get language and, b) about 40 minutes of DTs in other source

languages which exclude the target language. The development

and test sets were worth 10 minutes each. As an example, if

swh is the target language to be recognized, then the training

set consists of 40 minutes of PTs in swh and 200 minutes of

DTs in hun, yue, cmn, arb, and urd combined.

The orthographic transcriptions for the PTs and DTs were

converted to IPA based phone transcriptions. The canonical pro-

nunciation was derived from a lexicon. If a lexicon was not

available, a language specific G2P model was used. To form

a set of multilingual phone symbols, dipthongs/tripthongs were

split into two/three indivudal phone symbols unless they were

the same as English dipthongs. Diacritics such as tones and

stress markers tend to make the phone symbols unique to a par-

ticular language. Therefore, to enable phone merging across

languages, such language specific diacritics were removed from

the canonical phone transcriptions.

Finally, phone based language models (LMs) were built

from the text in the target language mined from Wikipedia. The

corpus is summarized in Table 1. The test utterances were suf-

ficiently shuffled so as to avoid biasing to a subset of speakers

or to a specific gender.

3.2. Monolingual HMM and DNN

In the first baseline, monolingual HMM and DNN models were

trained and tested using DTs in the target language. This is

the oracle scenario if we assume DTs were to be available in

the target language. Context-dependent GMM-HMM monolin-

gual acoustic models were trained using 39-dimensional MFCC

features which include the delta and acceleration coefficients.

Temporal context was included by splicing 7 successive 13-

dimensional MFCC vectors (current +/- 3 frames) into a high

Table 1: SBS Multilingual Corpus.

Language Utterances Phones

Train Test

Swahili (swh) 463 123 53

Hungarian (hun) 459 117 70

Cantonese (yue) 544 148 37

Mandarin (cmn) 467 113 57

Arabic (arb) 468 112 51

Urdu (urd) 385 94 45

All - - 82

Table 2: PERs of monolingual HMM and DNN models. Dev

set in parentheses.

Lang PER (%)

HMM DNN

swh 35.63 (47.00) 34.18 (39.49)

hun 38.72 (40.33) 35.62 (37.32)

cmn 31.80 (26.14) 28.26 (25.16)

Table 3: PERs of multilingual HMM and DNN models. Dev set

in parentheses.

Lang PER (%)

HMM DNN # Senones

swh 65.73 (67.58) 61.17 (63.12) 1003

hun 67.55 (68.50) 63.25 (63.65) 1012

cmn 71.09 (69.10) 64.68 (63.84) 994

Table 4: PERs of self-trained DNN models trained using STs.

Dev set in parentheses.

Lang PER %

swh 60.14 (62.07)

hun 61.05 (62.26)

cmn 63.67 (61.94)

dimensional supervector and then projecting the supervector to

40 dimensions using linear discriminant analysis (LDA). Using

these features, a maximum likelihood linear transform (MLLT)

[16] was computed to transform the means of the existing

model. The forced alignments obtained from the LDA+MLLT

model were further used for speaker adaptive training (SAT) by

computing feature-space maximum likelihood linear regression

(fMLLR) transforms [17]. The LDA+MLLT+SAT model is the

final HMM model that will be simply referred to as HMM in

all experiments. The forced aligned senones obtained from the

HMM were treated as the ground truth labels for DNN training.

For DNN training, we start with greedy layer-wise

Restricted Boltzmann Machines (RBMs) unsupervised pre-

training since this leads to better initialization [18]. Then the

DNNs were fine-tuned using supervised cross-entropy training.

All experiments were conducted using the Kaldi toolkit [19].

The monolingual PERs over a total of about 7K-8K phones are

given in Table 2. This give us an estimate about the approxi-

mate lower bound PERs thereby indicating this is possibly the

best we can achieve.

3.3. Multilingual HMM and DNN

Since the paper assumes zero DTs in the target language during

training, in the second baseline, multilingual DTs were used

to train HMMs and DNNs where the multilingual DTs exclude

the DTs in the target language. The training procedure was the

same as the one outlined in Section 3.2. The DNNs were trained

using 6 hidden layers with 1024 nodes per layer. The total num-

ber of output nodes in the softmax layer representing multilin-

gual senones was around 1000. The PERs are given in Table 3.

Expectedly, due to lack of DTs in the target language, the PERs
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Table 5: PERs of HMM, DNN-1, DNN-2, DNN-3 models trained using PTs. First element in parentheses is the PER of the dev set.

Second element is the absolute improvement in PER of the test set over MAP HMM.

Lang PER (%)

MAP HMM DNN-1 DNN-2 DNN-3

swh 44.77 (50.97,0.0) 45.14 (47.83,-0.37) 43.03 (45.87,1.74) 43.50 (45.95, 1.27)

hun 56.85 (57.69,0.0) 56.13 (57.21,0.72) 55.53 (56.08,1.32) 55.69 (56.85, 1.16)

cmn 59.23 (58.05,0.0) 54.95 (54.35,4.28) 53.70 (53.94,5.53) 53.05 (53.59, 6.18)

are much higher than the ideal case in Table 2. Hence, the PERs

in Table 3 establish the upper bound of PERs. In all subsequent

experiments, we start from the upper bound of PERs in Table 3

and attempt to approach the lower bound PERs in Table 2.

3.4. Self-training DNN

In this experiment, we explore a self-training algorithm [9] in

which a multilingual ASR system decodes the audio in the tar-

get language and then uses the confidence selected decoded la-

bels to retrain itself in the target language [7]. The objective

of this experiment is to evaluate the efficacy of the STs (self-

training transcripts) vs PTs. Since we are interested in generat-

ing STs from an ASR, we ignore the PTs from crowd workers

and decode the 40 minutes of audio in the training set using the

multilingual DNN from Section 3.3. The results are given in

Table 4. Compared to the multilingual DNN in Table 3, the im-

provement due to self-training is in the range 1.01%-2.20%. We

determined frame confidence thresholds as 0.5 or 0.6 from the

development set.

3.5. Training one softmax DNNs using PT: DNN-1

In this experiment, we use PT labels from crowd workers to

train the DNN-1 system in Fig. 3(a). In the first step, the mul-

tilingual HMM models in Section 3.3 are adapted to the PTs

using MAP adaptation. Details of this step are given in [20].

The PER results for the MAP adapted HMM are given in the

first column of Table 5. The absolute improvement in PER over

multilingual DNN models in Table 3 is significantly higher than

self-training, in the range 5.45%-16.4%. The conventional way

to adapt a DNN using DTs is to retain the SHLs of the multi-

lingual DNN, replace the existing softmax layer with a single

randomly initialized layer and fine tune this new layer using 1-

hot senone alignments from an HMM [11]. Here, for the case

of PTs, the MAP adapted HMM generates soft alignments of

the PTs which are used for fine tuning the new softmax layer.

The results for DNN-1 are given in the second column of Ta-

ble 5. Since the DNNs are now tuned to the target language

PTs, we compare their performance with MAP adapted HMMs.

The absolute improvement is in the range -0.37-4.28. Clearly,

DNN-1 performed worse than MAP HMM for Swahili and the

improvement is marginal for Hungarian. Thus, DNN-1 exhibits

chance performance. Hence, this approach does not work very

well for PTs largely due to the presence of incorrect labels in

PTs.

3.6. Training two softmax DNNs using PT and DT: DNN-2

In this experiment, instead of using a single softmax layer, we

use two separate softmax layers illustrated as the DNN-2 sys-

tem in Fig. 3(b). The first softmax layer is trained with target

language PTs only whereas the second softmax layer is trained

with multilingual DTs. While training DNN-2, we find intro-

ducing an additional copy of the multilingual DTs may some-

times lead to better PERs. This was observed in the case of Hun-

garian. For the other two languages (Swahili and Mandarin),

additional copies were not required. We determined the number

of copies from the development set. The results are given in the

third column of Table 5. This time the improvement in PERs

over MAP HMM is consistent and significantly higher (1.32%-

5.53%) than the improvement in DNN-1.

3.7. Training three softmax DNNs using PT, DT, and ST:

DNN-3
In this experiment, we introduce a third softmax layer (see

Fig. 3(c)) for ST labels generated from decoding additional un-

supervised data in the target language (4000 utterances ∼ 5.5

hours) using the DNN-2 system. We use the DNN-2 to de-

code unsupervised data instead of the multilingual DNN since

the former is better adapted to recognize the target language.

Hence, the languages of PTs and STs are matched. Frames

which had confidences below a threshold of 0.9 were discarded

since frames above this threshold are expected to have reliable

labels. To balance the effect of disproportionate amounts of data

between the DTs and STs, we created multiple (2-4) copies of

the frames labeled with DTs where the number of copies were

determined from the development set. The PER results are pre-

sented in Table 5. The results are similar to DNN-2 with im-

provements in the range 1.16%-6.18% . It appears that DNN-

3 is not significantly better than DNN-2 but still outperforms

DNN-1. Perhaps decoding more unsupervised audio to gener-

ate more STs or adding the STs to the PTs and then retraining

using the DNN-2 architecture might be useful. This is currently

under investigation.

Finally, comparing the PERs in Table 4 (self-train), Table

5 (DNN adapted) with the lower and upper bound PERs listed

in Table 2 (monlingual) and Table 3 (multilingual) respectively,

three findings are evident. First, from Table 5, DNN-2 or DNN-

3 outperform DNN-1 and MAP-HMM systems. Thus, for PTs,

we recommend DNN-2/DNN-3 as reliable baselines for adapt-

ing DNN to PTs instead of the conventional adaptation in DNN-

1. Second, DNN-2/DNN-3 are able to close between 28% and

67% (relative) of the gap between Table 3 and Table 2. Thus,

we can say that PTs are between one and two thirds as useful as

DTs. Third, PTs from crowd workers are more useful than STs

generated from an ASR system (Table 5 vs Table 4).

4. Conclusions
We investigated multiple DNN training strategies to adapt

DNNs to probabilistic transcripts collected from crowd work-

ers not familiar with the target language. We demonstrated

that adaptation to probabilistic transcripts using the conven-

tional DNN-1 system is not reliable. As a result, we proposed

adaptation using DNN-2 or DNN-3 systems which consistently

outperform DNN-1 and HMM systems. The absolute PER im-

provement for 3 languages were in the range 1.3%-6.2%.
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