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Chapter 5

Spectral and Cepstral Distance
Measures

5.1 Homomorphic Analysis

Linear systems are homomorphic to addition:

L{z1(n) + z2(n)] = Lz1(n)] + L{z2(n)] (5.1)

Linear filtering is useful for analyzing a signal with two additive components, e.g. y(n) = z(n) + €(n).
In speech, we are often more interested in “convolutional components.” For example, the speech signal can
be modeled as the convolution of a source function p(n), a transfer function ¢(n), and a radiation function
r(n):

z(n) = r(n) * (t(n) * p(n)) (5.2)
In order to analyze z:(n), we want a nonlinear “filtering” system which is “homomorphic to convolution,”
that is,

HIi(n) * p(n)] = H[t(n)] * H[p(n)] (5.3)

The system HJ[e] can be written as the series connection of a transformation D[e], a linear system L[e],
and the inverse transformation D~![e]:

H[t(n) * p(n)] = D" [L[Dt(n) * p(n)]] (5.4)
where D[e] is the transformation which converts convolution into addition:

D[t(n) * p(n)] = D[t(n)] + Dlp(n)] (5.5)

DJ[z(n)] can be written as D[z(n)] = &(n), where Z(n) is defined to be the complex cepstrum of z(n).
The form of the complex cepstrum is obvious if one considers the z transforms of z(n) and &(n):

X(@) = RETEPE) }f((z) — log(X () (5.6)
X(z) = R(z) + T(z) + P(2)
5.2 Definitions
5.2.1 Complex Cepstrum
#(n) = 2= [T log(X (e/))ed*mduw (5.7)
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X (e) =log(X (¢/)) = log |X (/)] + jarg(X () (5-8)

e The function arg(X (e/*) is the “unwrapped phase” of X. Recall that the principal argument, arg(X (e/*)),
is only defined over the range of (—m,7]. Such a constraint is not appropriate for the definition of cep-
strum, because we require that the sum of two cepstra should still be a valid cepstrum:

arg(X (e*)) = arg(R(e’)) + arg(T(¢/)) + arg(P(e’)) (5.9)

This requirement can be met by adding integer multiples of 27 to the principal argument, as necessary,
in order to produce a continuous, odd function of w; this process is known as “unwrapping” the phase
(the argument is only odd if z(n) is real).

e &(n) is only defined if log(X(z)) is a valid Z transform, uniformly defined on the unit circle.
e If 2(n) is real, then log | X (e/¢)| is even, and arg(X (e’“)) is odd, and therefore #(n) is real.

e 1 is sometimes called “quefrency,” especially in echo analysis applications. In speech analysis, n is
usually called the cepstral “lag,” just as the argument of R(n) is called the autocorrelation “lag.”

5.2.2 Cepstrum

c(n) = = [ log | X (e7) |67  dw (5.10)
&m) + 2(-n) gﬂ_”) = %/0 " log | X () e dw = e(n) (5.11)
5.2.3 Example

z(n) =6(n) —ad(n —N), |a/<1 (5.12)
X(z)=1-az™N (5.13)

N r,—rN
X(z) =log(l —az"V) = -y 22 if |az=N| <1 (5.14)
#(n) = =302, %6(n —rN) (5.15)
e(n) = (1/2)(&(n) + &(—n)) = — E;?ozl g—;(&(n —rN)+d(n+rN)) (5.16)

5.3 Minimum and Maximum Phase Sequences

Consider the class of signals whose spectra can be expressed as follows:
N, _ N,

= GH’f:l(1 —arz ) [T (1 — biz)

1Y, (1= crz ) TIN (1 = di2)

For this class of signals, all stable minimum phase signals (all signals with N, = 0, N; = 0) are also
causal, and all stable maximum phase signals (N, = 0, N. = 0) are also anti-causal. The cepstrum is:

X(2) s lakls okl ekl 1di| <1 (5.17)

Sy Ne w5

n n
Z(n) = log(G) n=0 (5.18)
N, b." Ng d."

k=1 "n = Zuk=1

n <0
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e For signals in this class, Z(n) is an infinite length signal, even if z(n) is finite in length (the only
exception is z(n) = Gdé(n)).

e i(n) decays exponentially fast as a function of n.
e Minimum-phase, causal sequences have causal &(n).

e Maximum-phase, anti-causal sequences have anti-causal Z(n).

5.4 Recursive Formula for the Cepstral Coefficients

X(2) =log(X (2)) (5.19)
)= ﬁdﬂi){(z) (5.20)
[—zd%)?(z)] X(z) = [—Z%X(z)} (5.21)
ni(n) * z(n) = nz(n) (5.22)
_i k&(k)z(n — k) = na(n) (5.23)
For n # 0, this yields o
Yoo i (k)z(n — k) = z(n) (5.24)

If (n) is minimum-phase and causal, the summation in the above equation is only non-zero for 0 < k < n,
yielding the following recursion for #(n):

sy B ke —k) o
m(n)—w(o) k; 22 (0) (k), n>0 (5.25)

If 2(n) is maximum-phase and anti-causal, the summation is only non-zero for n < k < 0, yielding the
following formula for &(n):

0
i(n) = ) _ > Mcﬁ(k‘), n<0 (5.26)

z(0) = log(z(0)) (5.27)

5.5 LPC Cepstrum

5.5.1 Complex Cepstrum

The cepstrum of the transfer function, £(n), can also be estimated from the LPC coefficients:

_ G
Iy

The LPC cepstrum h(m) is the inverse transform of log H(z):

(5.28)
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him) = Z7'(logH(z)) (5.29)
= Z7'(logG —log A(2)) (5.30)
= logGd(n) —a(m) (5.31)
0 n <0
= log(G) n=0 (5.32)
a(m) n>0

Since H(z) is minimum-phase, h(n) can be calculated from the log-spectrum of H(z):

1 27 ) .
e(n) = —/ log |H (e’¥)|e’“ ™ dw (5.33)
27T 0
0 n<0
h(n) = log(@) n=0 (5.34)

2¢(n) p>n>0

Alternatively, since A(z) is minimum-phase, a(m) is causal, and therefore h(m) is also a causal sequence.
The form of a(m) can be computed from the following recursion, which can be derived by differentiating
log A(2):

na(n) x a(n) = na(n) (5.35)
0 n <0
hin) = log(G) n=0 (5.36)

O+ iy Eaph(k) p>n>0

Notice that the first p + 1 cepstral coefficients (0 < n < p) contain a complete description of the transfer
function; h(n) for larger n can be computed recursively from the first p + 1 values of h(n).

5.5.2 LPC Power Cepstrum

In speech recognition, the cepstrum we work with most often is the inverse transform of |H(z)|*:

cm = 27 (log|H(2)) (5.37)
= Z ' (logG® —log A(z) —log A(z™ 1)) (5.38)
= logG*3(n) — a(m) — a(—m) (5.39)
= log Epmind(n) —a(m) — a(—m) (5.40)
(5.41)
Since a(n) is causal,
h(m) m>0
Cm = { h(m)/2 m=0 (5.42)
h(-m) m<0
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5.5.3 How is the LPC Cepstrum Usually Used?

1. Calculate LPC coefficients using autocorrelation method.
2. Convert into cepstral coefficients ¢,,, 0 < m.

3. Calculate distances using cepstral coefficients. When deriving distance formulas, we must remember
that ¢,, is an even sequence!!

56 Review

5.6.1 Complex Cepstrum

e The “complex cepstrum” Z(n) is a real sequence. It is called the complex cepstrum because it has a
complex Z transform.

e The complex cepstrum is defined to be

2T

2(n) = 2= [T log(X (e/))ei*™ dw (5.43)

e The complex cepstrum satisfies the equation

Yoo kz(k)z(n — k) = nz(n) (5.44)

5.6.2 Cepstrum
e The cepstrum c(n) is a real sequence with a real Z transform.

e The cepstrum can be defined

c(n) = 2= [ log | X (7)) e/ dw (5.45)

e The cepstrum is the even part of the complex cepstrum

c(n) = At (5.46)

5.6.3 Signals with Rational Z Transforms
If X(z) has the form

Na -1 Ny

e (1 —agz e (1 — by z
x(2) = R O m 0TI @ 208 ) e <1 (5.47)
[Tz (U —crz=t) [T;2, (1 — dg2)

then the cepstrum is

_Ei\f:ala?;+sz:cl% n>0
z(n) = log(G) n=0 (5.48)
i % -k % n<0
If X(2) is minimum-phase (N, = 0, Ng = 0), then

e If z(n) is stable, it must be causal.
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e i(n) is causal.
e #(n) is an infinite length sequence, which decays exponentially fast as n — oc.

e If z(n) is causal, Z(n) can be calculated using the recursion

in) = 20 _ i kxsz(g)k)i“(k), n>0 (5.49)
k=0

If X(2) is maximum-phase (N, = 0, Ng = 0), then

e If x(n) is stable, it must be anti-causal.

e i(n) is anti-causal.

e #(n) is an infinite length sequence, which decays exponentially fast as n — —oo.

e If x(n) is anti-causal, &(n) can be calculated using the recursion

oy T~ krn—k)
x(n)—x(o) k:ZnH n0) (k), n<0 (5.50)

5.7 Computational Considerations

Suppose we calculate an approximate cepstrum &,(n) by inverse transforming the log DFT:

Nl j2kn
X(k)=> a(n)e "~ (5.51)
n=0
X, (k) = log(X (k)) (5.52)
1= e
ip(n) = 5 D X(k)e™ (5.53)
k=0
p(n) = Y #n+rN) (5.54)

Since Z(n) is an infinite-length sequence, it is impossible to avoid aliasing.

5.8 Source-Filter Analysis

Suppose that we want to separate the transfer function of a speech signal, t(n), from the periodic source
spectrum ¢(n) = r(n) * p(n):

z(n) = t(n) * (r(n) « p(n)) = t(n) x q(n) (5.55)

This can be done using the cepstrum, if we know a bit about the signals involved.



Lecture Notes in Speech. .., DRAFT COPY.

5.8.1 Cepstrum of a Periodic Signal
Assume that ¢(n) has the following form:

q(n) = Zaré(n —rng), |aj<1
r=0

Q)= ——

1—az—"0

log(Q(z)) = —log(1 —az"™)

4(n) = Z %5(n —rng)

r=1

89

(5.56)

(5.57)

(5.58)

(5.59)

In words, ¢(n) is a decaying impulse train with period ng. As a — 1, the rate of decay approaches 1/r.

5.8.2 Cepstrum of the Transfer Function
If the transfer function is a minimum-phase function of the form

N, _
_ GHk:l(l —arz™h)

T(z
) [Tz, (1— cez)

Then

—i E e E w0
t(n) = log(@G) n=20
0 n <0

t(n) decays at least as quickly as w"%, where 74, = max(|ag|, |ck])-

5.8.3 “Liftering” to separate source and filter

We have that

g(n) =0, n<ng

no

t(n) < Tmi, n>ng
no

So, approximately,
0<n<ng
n > ng

1
0

0 0 S n <ngp
1 n>ng
5.9 Pole-Zero Analysis

Consider the spectrum

N(Z) _ Zz:l bkz—k
D(z) 1-37_ a2k

V(z) =

Suppose we know the signal v(n), and we want to estimate the parameters b, and ay.

(5.60)

(5.61)

(5.62)
(5.63)

(5.64)

(5.65)

(5.66)

(5.67)
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5.9.1 Estimating the Poles

Notice that, for n > g,

p
v(n) = Z arv(n — k) (5.68)
k=1
Thus, for n > ¢, v(n) can be modeled using a normal covariance LPC model:
p
e(n) =wv(n) —Zakv(n—k), g+1<n<N (5.69)
k=1
N
E,= Y €(n) (5.70)
n=q-+1

5.9.2 Estimating the Zeros

Consider the sequence

no(n) (5.71)
whose Z transform is
d ~ z o,
—ZEV(Z) = V(Z)V (2) (5.72)
z N'(2)D(z) — N(2)D'(z)

= s 5 (5.73)

D(z)

_ _ N'(x)D(z) - N(2)D'(2)

N()D(2) (5.74)

Thus, if there is no pole-zero cancellation, the poles of nd(n) include both the poles and zeros of v(n).
If V(z) is assumed to be minimum-phase, then the poles and zeros can be calculated as follows:

1. Find the zeros of D(z) using LPC analysis of v(n).
2. Find the zeros of N(z)D(z) using LPC analysis of no(n).

3. Compare the two sets, and if all of the zeros of D(z) are also zeros of N(z)D(z) (in other words, if
there is not too much error), then the remaining zeros of N(z)D(z) must belong to N(z).

5.10 Log Spectral Distance

5.10.1 Power Spectrum

In much of the speech recognition work this quarter, we will define a power spectrum S(e/*) which is the
Fourier transform of the autocorrelation:

o0

S(e™)= > R(m)e™/*m (5.75)

m=—00

Recall that if z(n) is the windowed speech signal, we can write

R(m) = z(m) *x x(—m) (5.76)

which means that
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S(e) = X(e)X () = X () (577

From now on, whenever the meaning is clear, we will simplify the notation of Fourier transforms as follows
S(w) = S(el*) (5.78)

5.10.2 Log Spectral Distance

Suppose we want to measure the “distortion” between spectra S;(w) and Sz(w). One of the most widely
studied distortion metrics available is the family of L, norms, defined as

™

1
(dp)?P = o [log S1(w) — log S2(w)[? dw (5.79)

As it turns out, this is generally a pretty bad choice, because if the window length is longer than a pitch
period, then d,, is dominated by differences in Fy.

5.11 Cepstral Distances

5.11.1 Complex Cepstrum and Power Cepstrum
The complex cepstrum of z(n) is defined to be
#(m) = 27 ' (log X (2)) = F ' (log X (w)) (5.80)

The cepstrum used most often in speech recognition is something you might call the “power cepstrum”
(though R&J usually just call it the “cepstrum”):

c(m) = F '{logS(w)} (5.81)
= FH {log(X (w)X (~w))} (5.82)

= F ' {logX(w)}+ FH{log(X (~w))} (5.83)

= i(m)+ &(—m) (5.84)
(5.85)

Properties:
e Both #(m) and ¢(m) are real numbers.
e ¢(m) = c(—m).
o If X(z) is minimum-phase, (m) is causal, and ¢(m) = &(m) for m > 0.
o If X(z) is maximum-phase, &(m) is anti-causal, and ¢(m) = &(m) for m <0.

e ¢(m) is an exponentially decaying, bounded sequence.

5.11.2 Cepstral L, Norm

Parseval’s theorem says that the Ly spectral norm can be computed in either the frequency domain or the
time domain:

(d)? = % j llog 51 (w) — log S5 (w)|? duw (5.86)
= Z (c1(m) — cz(m))? (5.87)

(5.88)
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5.11.3 LPC Cepstrum
The LPC Power Cepstrum is the inverse transform of log |H (z)|*:

—1 G® — 2 floe G2 1 flo
Z {log |A(z)|2} = {logG*} — 27" {log | A(2)|*} (5.89)
= Z7 ' {logG*} — 27" {log A(2)} — Z7' {log A(="")} (5.90)
= 2logGd(m) — (a(m) + a(—m)) (5.91)
(5.92)
Cepstrum from LPC Roots
A) = JJ=rizh) (5.93)
logA(z) = zpjlog(l —riz7h) (5.94)
a(m) = —zp:%, m>1 (5.95)
- (5.96)
Cepstrum from LPC Coefficients
A(z) = logA(2) (5.97)
dA(z) 1 dA(2)
T T _ZA(Z) dz (5.98)
na(n) xa(n) = na(n) (5.99)
(5.100)

Since we already know that a(n) and a(n) are causal, the convolution in the last line can be converted into
a recursive formula for a(n).

5.11.4 Cepstral Representation of Spectral Energy, Slope, and Finer Detail

The cepstrum is more interesting if you understand the “meaning” of the different coefficients. For example,
¢(0) represents the average energy:

1 ™
c(0) = - / log S () duw (5.101)
2 J_,
¢(1) represents the spectral tilt:
c(l) = &(1)+z(-1) (5.102)
= QL logX(oJ)(ej“’ +e79%) dw (5.103)
= / coswlog X (w)dw (5.104)

Higher cepstral coefficients represent finer-grain details of the spectral shape. For example, the coefficient
—c(2) represents the degree to which spectral energy is clustered around w = —m/2:
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¢2) = % / " c08(2w) log X (w)duw (5.105)

-7

5.12 Cepstral Liftering

5.12.1 Window in Time = Convolve in Frequency

Remember that windowing in time equals convolution in frequency. Suppose that w(m) is a windowing
sequence with spectrum W (w); then

FA{e(m)w(m)} =log S(w) x W (w) (5.106)
If W(w) has a low-pass filter shape, then we can smooth the log spectrum using the following procedure:
1. Convert from FFT or LPC to Cepstrum.
2. Window the cepstrum.
3. Convert back to FFT or LPC.

5.12.2 Weighted/Liftered Cepstral Distances
Remember that the L, distance between S;(w) and Sp(w) is

T (o)

% i |log S1 (w) — log 52(0.])|2 dw = Z (c1(m) — ca(m))? (5.107)

m=—00

Adding up an infinite number of cepstral samples is not practical. In practice, we usually calculate the
liftered or weighted cepstral distance,

L
iy = z:wQ(m)(q(m)—cQ(m))2 (5.108)
= % /_ﬁ |(log St (w) * W (w)) — (log S (w) * W (w))|*dw (5.109)
(5.110)

5.12.3 Symmetric Equivalent Window

Speech recognition often makes use of a delayed causal w(m), that is, a window which is non-zero only for
m strictly greater than 0. If w(m) is a delayed causal window, the amount of smoothing given by cepstral
liftering is slightly different from that estimated by the above formula. Suppose we define the even part of
w(m) to be w(m):

7 { w(m)/2 — m>0

Ww)=R{Ww)}, @(m)= wlom)/2 m <0 (5.111)

If w(m) is delayed causal, we can take advantage of the even symmetry of ¢; (m) to express d%y;, as a two-sided
sum:

L
2y = 2 Z w*(m)(c1(m) — ca(m))? (5.112)
m=—L
= %[ |(log S (w) * W (w)) — (log Sa(w) * W (w))|*dw (5.113)

(5.114)
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So a weighted cepstral distance is similar to the following L, norm:
e Smooth log S; (w) and log Sy (w) using the smoothing spectrum W (w) = R {W (w)}.

e Calculate the Ly distortion measure between the two smoothed log spectra.

5.12.4 Example: Rectangular Window

If w(m) is a causal rectangular window covering samples 1 through L, then @(m) is an even window of
length 2L + 1:

(1 m=1,...,L o (12 m=-L,...,~1,1,...,L
w(m)—{ 0 else ’ w(m)—{ 0 else (5.115)

w(m) is just a rectangular window of length 2L + 1, minus the impulse §(n). The spectrum is therefore:

. w(2L41)

1 sin =5
_— -y —— 11
2sin ¥ 2 2sin g (5.116)
(5.117)

where the approximation holds for large L.
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5.13 Exercises

1. Consider the sequence
z[n] = é[n] — ad[n — 1] (5.118)

where |a| < 1. Suppose that we wish to approximate the complex cepstrum &[n] from samples of the
logarithm of the Fourier transform:

N—-1
&y[n] = % I;) log (X(ef'%"'m)) (5.119)

Is it possible to choose N large enough such that &,[n] = &[n], without aliasing? If so, what is the
minimum value of N? If not, what is the minimum value of N (give or take a few samples) such that

. N Z[n
|Zp[n] — Z[n]| < %‘ (5.120)
Note: You may find the following formula to be useful:
o0 [L‘n
log(l—z)=— Z 7 if |[z] <1 (5.121)
n=1

2. Suppose that homomorphic analysis yields the following estimate of the vocal tract transfer function:

N G _G 12[ 1
1= apz=t s (L=bez (L= bzt

H(z) (5.122)

with pole locations by, = rrel% and b} = rre/% which are located inside the unit circle. If the
sampling rate is Fy, then the formant frequencies F} and bandwidths By can be estimated by:

. F.b,
Fp = 27rk (5.123)

. F,

By = —?S log(rk) (5.124)

Suppose that we suspect that all of the bandwidth estimates By, are too large. Show that the estimated
formant bandwidths are reduced, without changing the estimated formant frequencies, if we replace
H(z) by the following transformed spectrum:

- z ! 1
16 =1 (0) =6 1 53 amna —wem (5.125)
where « is real and greater than unity and |abg| < 1.
3. Suppose h(n) in part (a) consists of a single complex pole pair of the form
H(z)= L (5.126)

(1 —reifz=1)(1 —re—ifz-1)

where r and @ are both real. Find expressions for the complex cepstra associated with H(z) and H(z)
in this case. Find expressions for the real cepstra, and plot the real cepstra as functions of time.

4. Compute the following spectra for three different vowel segments segments, and plot the log-magnitude
spectra (in dB) for frequencies between 0 and 4000Hz. You should turn in code, equations, or some
combination of both which will make it clear how each spectrum was computed.
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(a) Power spectrum S(w).

(b) S(w), smoothed using cepstral lifter w; (n):
wi(n) =un—1)—uln—L—-1) (5.127)
Choose L so that the window length is 1.5ms. What is the cutoff frequency of the magnitude
lifter spectrum, Wy (w) = |[Wy (w)]|?

(c¢) S(w), smoothed using cepstral lifter wy(n):

s (n) = 11 (n) (1 + g sin(%)) (5.128)

) LPC transfer function H(w) = G/A(w).

e) H(w), smoothed using cepstral lifter @, (n).
) H(w), smoothed using cepstral lifter s (n).
)

Line spectra 1/P(w) and 1/Q(w), truncated at reasonable maximum and minimum values.

5. The three vowel signals you analyzed in problem 4 are different — but how different are they? Calculate

the difference between the two vowels using the following spectral distortion metrics. Turn in code
and/or equations showing how each distortion metric was computed.

(a) Lo spectral norm, calculated using log-FFT spectra.

(b) Truncated cepstral distance d2(L), where L is chosen as in problem 1(b).

(¢) Liftered cepstral distance d?, (L), using the lifter @, (n) defined in problem 1(c).
)

(d) Likelihood-ratio distortions,

1 1 1 1
d —_ d d _ 5.129
o (e me) @ o (o fae) (>129)
where the subscripts 1 and 2 represent the first and second vowel.

(e) Itakura-Saito distortions,

@ @ @ @
d’5<|A1|2’|A2|2> and d’5<|A2|2’|A1|2> (5.130)

(f) LSF Euclidean distance.



