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Chapter 5

Spectral and Cepstral Distance

Measures

5.1 Homomorphic Analysis

Linear systems are homomorphic to addition:

L[x1(n) + x2(n)] = L[x1(n)] + L[x2(n)] (5.1)

Linear �ltering is useful for analyzing a signal with two additive components, e.g. y(n) = x(n) + �(n).

In speech, we are often more interested in \convolutional components." For example, the speech signal can

be modeled as the convolution of a source function p(n), a transfer function t(n), and a radiation function

r(n):

x(n) = r(n) � (t(n) � p(n)) (5.2)

In order to analyze x(n), we want a nonlinear \�ltering" system which is \homomorphic to convolution,"

that is,

H [t(n) � p(n)] = H [t(n)] �H [p(n)] (5.3)

The system H [�] can be written as the series connection of a transformation D[�], a linear system L[�],

and the inverse transformation D�1[�]:

H [t(n) � p(n)] = D�1 [L [D[t(n) � p(n)]]] (5.4)

where D[�] is the transformation which converts convolution into addition:

D[t(n) � p(n)] = D[t(n)] +D[p(n)] (5.5)

D[x(n)] can be written as D[x(n)] = x̂(n), where x̂(n) is de�ned to be the complex cepstrum of x(n).

The form of the complex cepstrum is obvious if one considers the z transforms of x(n) and x̂(n):

X(z) = R(z)T (z)P (z)

X̂(z) = R̂(z) + T̂ (z) + P̂ (z)

9=
; X̂(z) = log(X(z)) (5.6)

5.2 De�nitions

5.2.1 Complex Cepstrum

x̂(n) = 1
2�

R 2�
0

log(X(ej!))ej!nd! (5.7)
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X̂(ej!) = log(X(ej!)) = log jX(ej!)j+ jcarg(X(ej!)) (5.8)

� The function carg(X(ej!) is the \unwrapped phase" ofX . Recall that the principal argument, arg(X(ej!)),

is only de�ned over the range of (��; �]. Such a constraint is not appropriate for the de�nition of cep-

strum, because we require that the sum of two cepstra should still be a valid cepstrum:

carg(X(ej!)) = carg(R(ej!)) + carg(T (ej!)) + carg(P (ej!)) (5.9)

This requirement can be met by adding integer multiples of 2� to the principal argument, as necessary,

in order to produce a continuous, odd function of !; this process is known as \unwrapping" the phase

(the argument is only odd if x(n) is real).

� x̂(n) is only de�ned if log(X(z)) is a valid Z transform, uniformly de�ned on the unit circle.

� If x(n) is real, then log jX(ej!)j is even, and carg(X(ej!)) is odd, and therefore x̂(n) is real.

� n is sometimes called \quefrency," especially in echo analysis applications. In speech analysis, n is

usually called the cepstral \lag," just as the argument of R(n) is called the autocorrelation \lag."

5.2.2 Cepstrum

c(n) = 1
2�

R 2�
0

log jX(ej!)jej!nd! (5.10)

x̂(n) + x̂(�n)

2
=

1

2�

Z 2�

0

log jX(ej!)jej!nd! = c(n) (5.11)

5.2.3 Example

x(n) = Æ(n)� �Æ(n�N); j�j < 1 (5.12)

X(z) = 1� �z�N (5.13)

X̂(z) = log(1� �z�N ) = �

NX
r=1

�rz�rN

r
if j�z�N j < 1 (5.14)

x̂(n) = �
P

1

r=1
�
r

r
Æ(n� rN) (5.15)

c(n) = (1=2)(x̂(n) + x̂(�n)) = �
P

1

r=1
�
r

2r
(Æ(n� rN) + Æ(n+ rN)) (5.16)

5.3 Minimum and Maximum Phase Sequences

Consider the class of signals whose spectra can be expressed as follows:

X(z) = G

Q
Na

k=1(1� akz
�1)

Q
Nb

k=1(1� bkz)Q
Nc

k=1(1� ckz�1)
Q

Nd

k=1(1� dkz)
; jakj; jbkj; jckj; jdkj < 1 (5.17)

For this class of signals, all stable minimum phase signals (all signals with Nb = 0; Nd = 0) are also

causal, and all stable maximum phase signals (Na = 0; Nc = 0) are also anti-causal. The cepstrum is:

x̂(n) =

8>><
>>:

�
P

Na

k=1

a
n

k

n
+
P

Nc

k=1

c
n

k

n
n > 0

log(G) n = 0P
Nb

k=1

b
�n

k

n
�
P

Nd

k=1

d
�n

k

n
n < 0

(5.18)
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� For signals in this class, x̂(n) is an in�nite length signal, even if x(n) is �nite in length (the only

exception is x(n) = GÆ(n)).

� x̂(n) decays exponentially fast as a function of n.

� Minimum-phase, causal sequences have causal x̂(n).

� Maximum-phase, anti-causal sequences have anti-causal x̂(n).

5.4 Recursive Formula for the Cepstral CoeÆcients

X̂(z) = log(X(z)) (5.19)

d

dz
X̂(z) =

1

X(z)

d

dz
X(z) (5.20)

�
�z

d

dz
X̂(z)

�
X(z) =

�
�z

d

dz
X(z)

�
(5.21)

nx̂(n) � x(n) = nx(n) (5.22)

1X
k=�1

kx̂(k)x(n � k) = nx(n) (5.23)

For n 6= 0, this yields

P
1

k=�1
k

n
x̂(k)x(n� k) = x(n) (5.24)

If x(n) is minimum-phase and causal, the summation in the above equation is only non-zero for 0 � k � n,

yielding the following recursion for x̂(n):

x̂(n) =
x(n)

x(0)
�

n�1X
k=0

kx(n� k)

nx(0)
x̂(k); n > 0 (5.25)

If x(n) is maximum-phase and anti-causal, the summation is only non-zero for n � k � 0, yielding the

following formula for x̂(n):

x̂(n) =
x(n)

x(0)
�

0X
k=n+1

kx(n� k)

nx(0)
x̂(k); n < 0 (5.26)

In both cases, we have already shown that

x̂(0) = log(x(0)) (5.27)

5.5 LPC Cepstrum

5.5.1 Complex Cepstrum

The cepstrum of the transfer function, t̂(n), can also be estimated from the LPC coeÆcients:

H(z) =
G

1�
P

p

k=1 �kz
�k

(5.28)

The LPC cepstrum ĥ(m) is the inverse transform of logH(z):
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ĥ(m) = Z
�1 (logH(z)) (5.29)

= Z
�1 (logG� logA(z)) (5.30)

= logGÆ(n)� â(m) (5.31)

=

8>><
>>:

0 n < 0

log(G) n = 0

â(m) n > 0

(5.32)

Since H(z) is minimum-phase, ĥ(n) can be calculated from the log-spectrum of H(z):

c(n) =
1

2�

Z 2�

0

log jH(ej!)jej!nd! (5.33)

ĥ(n) =

8>><
>>:

0 n < 0

log(G) n = 0

2c(n) p � n > 0

(5.34)

Alternatively, since A(z) is minimum-phase, â(m) is causal, and therefore ĥ(m) is also a causal sequence.

The form of â(m) can be computed from the following recursion, which can be derived by di�erentiating

logA(z):

nâ(n) � a(n) = na(n) (5.35)

ĥ(n) =

8>><
>>:

0 n < 0

log(G) n = 0

�n +
P

n�1

k=1
k

n
�n�kĥ(k) p � n > 0

(5.36)

Notice that the �rst p+1 cepstral coeÆcients (0 � n � p) contain a complete description of the transfer

function; ĥ(n) for larger n can be computed recursively from the �rst p+ 1 values of ĥ(n).

5.5.2 LPC Power Cepstrum

In speech recognition, the cepstrum we work with most often is the inverse transform of jH(z)j2:

cm = Z
�1
�
log jH(z)j2

�
(5.37)

= Z
�1
�
logG2

� logA(z)� logA(z�1)
�

(5.38)

= logG2Æ(n)� â(m)� â(�m) (5.39)

= logEminÆ(n)� â(m)� â(�m) (5.40)

(5.41)

Since â(n) is causal,

cm =

8<
:

ĥ(m) m > 0

ĥ(m)=2 m = 0

ĥ(�m) m < 0

(5.42)
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5.5.3 How is the LPC Cepstrum Usually Used?

1. Calculate LPC coeÆcients using autocorrelation method.

2. Convert into cepstral coeÆcients cm, 0 � m.

3. Calculate distances using cepstral coeÆcients. When deriving distance formulas, we must remember

that cm is an even sequence!!

5.6 Review

5.6.1 Complex Cepstrum

� The \complex cepstrum" x̂(n) is a real sequence. It is called the complex cepstrum because it has a

complex Z transform.

� The complex cepstrum is de�ned to be

x̂(n) = 1
2�

R 2�
0

log(X(ej!))ej!nd! (5.43)

� The complex cepstrum satis�es the equation

P
1

k=�1 kx̂(k)x(n � k) = nx(n) (5.44)

5.6.2 Cepstrum

� The cepstrum c(n) is a real sequence with a real Z transform.

� The cepstrum can be de�ned

c(n) = 1
2�

R 2�
0

log jX(ej!)jej!nd! (5.45)

� The cepstrum is the even part of the complex cepstrum

c(n) =
x̂(n)+x̂(�n)

2
(5.46)

5.6.3 Signals with Rational Z Transforms

If X(z) has the form

X(z) = G

Q
Na

k=1(1� akz
�1)

Q
Nb

k=1(1� bkz)Q
Nc

k=1(1� ckz�1)
Q

Nd

k=1(1� dkz)
; jakj; jbkj; jckj; jdkj < 1 (5.47)

then the cepstrum is

x̂(n) =

8>><
>>:

�
P

Na

k=1

a
n

k

n
+
P

Nc

k=1

c
n

k

n
n > 0

log(G) n = 0P
Nb

k=1

b
�n

k

n
�
P

Nd

k=1

d
�n

k

n
n < 0

(5.48)

If X(z) is minimum-phase (Nb = 0; Nd = 0), then

� If x(n) is stable, it must be causal.
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� x̂(n) is causal.

� x̂(n) is an in�nite length sequence, which decays exponentially fast as n!1.

� If x(n) is causal, x̂(n) can be calculated using the recursion

x̂(n) =
x(n)

x(0)
�

n�1X
k=0

kx(n� k)

nx(0)
x̂(k); n > 0 (5.49)

If X(z) is maximum-phase (Nb = 0; Nd = 0), then

� If x(n) is stable, it must be anti-causal.

� x̂(n) is anti-causal.

� x̂(n) is an in�nite length sequence, which decays exponentially fast as n! �1.

� If x(n) is anti-causal, x̂(n) can be calculated using the recursion

x̂(n) =
x(n)

x(0)
�

0X
k=n+1

kx(n� k)

nx(0)
x̂(k); n < 0 (5.50)

5.7 Computational Considerations

Suppose we calculate an approximate cepstrum x̂p(n) by inverse transforming the log DFT:

X(k) =

N�1X
n=0

x(n)e�
j2�kn

N (5.51)

X̂p(k) = log(X(k)) (5.52)

x̂p(n) =
1

N

N�1X
k=0

X̂(k)e
j2�kn

N (5.53)

x̂p(n) =

1X
r=�1

x̂(n+ rN) (5.54)

Since x̂(n) is an in�nite-length sequence, it is impossible to avoid aliasing.

5.8 Source-Filter Analysis

Suppose that we want to separate the transfer function of a speech signal, t(n), from the periodic source

spectrum q(n) = r(n) � p(n):

x(n) = t(n) � (r(n) � p(n)) � t(n) � q(n) (5.55)

This can be done using the cepstrum, if we know a bit about the signals involved.
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5.8.1 Cepstrum of a Periodic Signal

Assume that q(n) has the following form:

q(n) =

1X
r=0

�rÆ(n� rn0); j�j < 1 (5.56)

Q(z) =
1

1� �z�n0
(5.57)

log(Q(z)) = � log(1� �z�n0) (5.58)

q̂(n) =

1X
r=1

�r

r
Æ(n� rn0) (5.59)

In words, q̂(n) is a decaying impulse train with period n0. As �! 1, the rate of decay approaches 1=r.

5.8.2 Cepstrum of the Transfer Function

If the transfer function is a minimum-phase function of the form

T (z) = G

Q
Na

k=1(1� akz
�1)Q

Nc

k=1(1� ckz�1)
(5.60)

Then

t̂(n) =

8>><
>>:

�
P

Na

k=1

a
n

k

n
+
P

Nc

k=1

c
n

k

n
n > 0

log(G) n = 0

0 n < 0

(5.61)

t̂(n) decays at least as quickly as
r
n

max

n
, where rmax = max(jakj; jckj).

5.8.3 \Liftering" to separate source and �lter

We have that

q̂(n) = 0; n < n0 (5.62)

t̂(n) <
rn0
max

n0
; n > n0 (5.63)

x̂(n) = t̂(n) + q̂(n) (5.64)

So, approximately,

l(n)x̂(n) � t̂(n) if l(n) =

�
1 0 � n < n0
0 n � n0

(5.65)

l(n)x̂(n) � q̂(n) if l(n) =

�
0 0 � n < n0
1 n � n0

(5.66)

5.9 Pole-Zero Analysis

Consider the spectrum

V (z) =
N(z)

D(z)
=

P
q

k=1 bkz
�k

1�
P

p

k=1 akz
�k

(5.67)

Suppose we know the signal v(n), and we want to estimate the parameters bk and ak.
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5.9.1 Estimating the Poles

Notice that, for n > q,

v(n) =

pX
k=1

akv(n� k) (5.68)

Thus, for n > q, v(n) can be modeled using a normal covariance LPC model:

e(n) = v(n) �

pX
k=1

�kv(n� k); q + 1 � n � N (5.69)

En =

NX
n=q+1

e2(n) (5.70)

5.9.2 Estimating the Zeros

Consider the sequence

nv̂(n) (5.71)

whose Z transform is

�z
d

dz
V̂ (z) = �

z

V (z)
V 0(z) (5.72)

= �
z

N(z)

D(z)

N 0(z)D(z)�N(z)D0(z)

D2(z)
(5.73)

= �z
N 0(z)D(z)�N(z)D0(z)

N(z)D(z)
(5.74)

Thus, if there is no pole-zero cancellation, the poles of nv̂(n) include both the poles and zeros of v(n).

If V (z) is assumed to be minimum-phase, then the poles and zeros can be calculated as follows:

1. Find the zeros of D(z) using LPC analysis of v(n).

2. Find the zeros of N(z)D(z) using LPC analysis of nv̂(n).

3. Compare the two sets, and if all of the zeros of D(z) are also zeros of N(z)D(z) (in other words, if

there is not too much error), then the remaining zeros of N(z)D(z) must belong to N(z).

5.10 Log Spectral Distance

5.10.1 Power Spectrum

In much of the speech recognition work this quarter, we will de�ne a power spectrum S(ej!) which is the

Fourier transform of the autocorrelation:

S(ej!) =

1X
m=�1

R(m)e�j!m (5.75)

Recall that if x(n) is the windowed speech signal, we can write

R(m) = x(m) � x(�m) (5.76)

which means that
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S(ej!) = X(ej!)X(e�j!) = jX(ej!)j2 (5.77)

From now on, whenever the meaning is clear, we will simplify the notation of Fourier transforms as follows

S(!) � S(ej!) (5.78)

5.10.2 Log Spectral Distance

Suppose we want to measure the \distortion" between spectra S1(!) and S2(!). One of the most widely

studied distortion metrics available is the family of Lp norms, de�ned as

(dp)
p =

1

2�

Z
�

��

jlogS1(!)� logS2(!)j
p
d! (5.79)

As it turns out, this is generally a pretty bad choice, because if the window length is longer than a pitch

period, then dp is dominated by di�erences in F0.

5.11 Cepstral Distances

5.11.1 Complex Cepstrum and Power Cepstrum

The complex cepstrum of x(n) is de�ned to be

x̂(m) = Z
�1(logX(z)) = F

�1(logX(!)) (5.80)

The cepstrum used most often in speech recognition is something you might call the \power cepstrum"

(though R&J usually just call it the \cepstrum"):

c(m) = F
�1
flogS(!)g (5.81)

= F
�1
flog(X(!)X(�!))g (5.82)

= F
�1
flogX(!)g+F�1

flog(X(�!))g (5.83)

= x̂(m) + x̂(�m) (5.84)

(5.85)

Properties:

� Both x̂(m) and c(m) are real numbers.

� c(m) = c(�m).

� If X(z) is minimum-phase, x̂(m) is causal, and c(m) = x̂(m) for m � 0.

� If X(z) is maximum-phase, x̂(m) is anti-causal, and c(m) = x̂(m) for m � 0.

� c(m) is an exponentially decaying, bounded sequence.

5.11.2 Cepstral L2 Norm

Parseval's theorem says that the L2 spectral norm can be computed in either the frequency domain or the

time domain:

(d2)
2 =

1

2�

Z
�

��

jlogS1(!)� logS2(!)j
2
d! (5.86)

=

1X
m=�1

(c1(m)� c2(m))2 (5.87)

(5.88)
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5.11.3 LPC Cepstrum

The LPC Power Cepstrum is the inverse transform of log jH(z)j2:

Z
�1

�
log

G2

jA(z)j2

�
= Z

�1
�
logG2

	
�Z

�1
�
log jA(z)j2

	
(5.89)

= Z
�1
�
logG2

	
�Z

�1
flogA(z)g � Z�1

�
logA(z�1)

	
(5.90)

= 2 logGÆ(m)� (â(m) + â(�m)) (5.91)

(5.92)

Cepstrum from LPC Roots

A(z) =

pY
i=1

(1� riz
�1) (5.93)

logA(z) =

pX
i=1

log(1� riz
�1) (5.94)

â(m) = �

pX
i=1

rm
i

m
; m � 1 (5.95)

(5.96)

Cepstrum from LPC CoeÆcients

Â(z) = logA(z) (5.97)

�z
dÂ(z)

dz
= �z

1

A(z)

dA(z)

dz
(5.98)

nâ(n) � a(n) = na(n) (5.99)

(5.100)

Since we already know that a(n) and â(n) are causal, the convolution in the last line can be converted into

a recursive formula for â(n).

5.11.4 Cepstral Representation of Spectral Energy, Slope, and Finer Detail

The cepstrum is more interesting if you understand the \meaning" of the di�erent coeÆcients. For example,

c(0) represents the average energy:

c(0) =
1

2�

Z
�

��

logS(!)d! (5.101)

c(1) represents the spectral tilt:

c(1) = x̂(1) + x̂(�1) (5.102)

=
1

2�

Z
�

��

logX(!)(ej! + e�j!)d! (5.103)

=
1

�

Z
�

��

cos! logX(!)d! (5.104)

Higher cepstral coeÆcients represent �ner-grain details of the spectral shape. For example, the coeÆcient

�c(2) represents the degree to which spectral energy is clustered around ! = ��=2:
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c(2) =
1

�

Z
�

��

cos(2!) logX(!)d! (5.105)

5.12 Cepstral Liftering

5.12.1 Window in Time = Convolve in Frequency

Remember that windowing in time equals convolution in frequency. Suppose that w(m) is a windowing

sequence with spectrum W (!); then

F fc(m)w(m)g = logS(!) �W (!) (5.106)

If W (!) has a low-pass �lter shape, then we can smooth the log spectrum using the following procedure:

1. Convert from FFT or LPC to Cepstrum.

2. Window the cepstrum.

3. Convert back to FFT or LPC.

5.12.2 Weighted/Liftered Cepstral Distances

Remember that the L2 distance between S1(!) and S2(!) is

1

2�

Z
�

��

jlogS1(!)� logS2(!)j
2
d! =

1X
m=�1

(c1(m)� c2(m))2 (5.107)

Adding up an in�nite number of cepstral samples is not practical. In practice, we usually calculate the

liftered or weighted cepstral distance,

d2
cW

=

LX
m=1

w2(m)(c1(m)� c2(m))2 (5.108)

=
1

2�

Z
�

��

j(logS1(!) �W (!))� (logS2(!) �W (!))j2d! (5.109)

(5.110)

5.12.3 Symmetric Equivalent Window

Speech recognition often makes use of a delayed causal w(m), that is, a window which is non-zero only for

m strictly greater than 0. If w(m) is a delayed causal window, the amount of smoothing given by cepstral

liftering is slightly di�erent from that estimated by the above formula. Suppose we de�ne the even part of

w(m) to be ~w(m):

~W (!) = <fW (!)g ; ~w(m) =

�
w(m)=2 m > 0

w(�m)=2 m < 0
(5.111)

If w(m) is delayed causal, we can take advantage of the even symmetry of c1(m) to express d2
cW

as a two-sided

sum:

d2
cW

= 2

LX
m=�L

~w2(m)(c1(m)� c2(m))2 (5.112)

=
1

�

Z
�

��

j(logS1(!) � ~W (!))� (logS2(!) � ~W (!))j2d! (5.113)

(5.114)
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So a weighted cepstral distance is similar to the following L2 norm:

� Smooth logS1(!) and logS2(!) using the smoothing spectrum ~W (!) = <fW (!)g.

� Calculate the L2 distortion measure between the two smoothed log spectra.

5.12.4 Example: Rectangular Window

If w(m) is a causal rectangular window covering samples 1 through L, then ~w(m) is an even window of

length 2L+ 1:

w(m) =

�
1 m = 1; : : : ; L

0 else
; ~w(m) =

�
1=2 m = �L; : : : ;�1; 1; : : : ; L

0 else
(5.115)

~w(m) is just a rectangular window of length 2L+ 1, minus the impulse Æ(n). The spectrum is therefore:

~W (!) =
sin

!(2L+1)

2

2 sin !

2

�
1

2
�

sin
!(2L+1)

2

2 sin !

2

(5.116)

(5.117)

where the approximation holds for large L.
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5.13 Exercises

1. Consider the sequence

x[n] = Æ[n]� aÆ[n� 1] (5.118)

where jaj < 1. Suppose that we wish to approximate the complex cepstrum x̂[n] from samples of the

logarithm of the Fourier transform:

x̂p[n] =
1

N

N�1X
k=0

log
�
X(ej

2�

N
kn)
�

(5.119)

Is it possible to choose N large enough such that x̂p[n] = x̂[n], without aliasing? If so, what is the

minimum value of N? If not, what is the minimum value of N (give or take a few samples) such that

jx̂p[n]� x̂[n]j <

���� x̂[n]100

���� (5.120)

Note: You may �nd the following formula to be useful:

log(1� x) = �

1X
n=1

xn

n
if jxj < 1 (5.121)

2. Suppose that homomorphic analysis yields the following estimate of the vocal tract transfer function:

H(z) =
G

1�
P2q

k=1 akz
�k

= G

qY
k=1

1

(1� bkz�1)(1� b�
k
z�1)

(5.122)

with pole locations bk = rke
j�k and b�

k
= rke

�j�k which are located inside the unit circle. If the

sampling rate is Fs, then the formant frequencies Fk and bandwidths Bk can be estimated by:

F̂k =
Fs�k

2�
(5.123)

B̂k = �
Fs

�
log(rk) (5.124)

Suppose that we suspect that all of the bandwidth estimates B̂k are too large. Show that the estimated

formant bandwidths are reduced, without changing the estimated formant frequencies, if we replace

H(z) by the following transformed spectrum:

~H(z) = H
� z
�

�
= G

qY
k=1

1

(1� bk(z=�)�1)(1� b�
k
(z=�)�1)

(5.125)

where � is real and greater than unity and j�bkj < 1.

3. Suppose h(n) in part (a) consists of a single complex pole pair of the form

H(z) =
1

(1� rej�z�1)(1� re�j�z�1)
(5.126)

where r and � are both real. Find expressions for the complex cepstra associated with H(z) and ~H(z)

in this case. Find expressions for the real cepstra, and plot the real cepstra as functions of time.

4. Compute the following spectra for three di�erent vowel segments segments, and plot the log-magnitude

spectra (in dB) for frequencies between 0 and 4000Hz. You should turn in code, equations, or some

combination of both which will make it clear how each spectrum was computed.
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(a) Power spectrum S(!).

(b) S(!), smoothed using cepstral lifter ŵ1(n):

ŵ1(n) = u(n� 1)� u(n� L� 1) (5.127)

Choose L so that the window length is 1.5ms. What is the cuto� frequency of the magnitude

lifter spectrum, ~W1(!) = jŴ1(!)j?

(c) S(!), smoothed using cepstral lifter ŵ2(n):

ŵ2(n) = ŵ1(n)

�
1 +

L

2
sin(

n�

L
)

�
(5.128)

(d) LPC transfer function H(!) = G=A(!).

(e) H(!), smoothed using cepstral lifter ŵ1(n).

(f) H(!), smoothed using cepstral lifter ŵ2(n).

(g) Line spectra 1=P (!) and 1=Q(!), truncated at reasonable maximum and minimum values.

5. The three vowel signals you analyzed in problem 4 are di�erent | but how di�erent are they? Calculate

the di�erence between the two vowels using the following spectral distortion metrics. Turn in code

and/or equations showing how each distortion metric was computed.

(a) L2 spectral norm, calculated using log-FFT spectra.

(b) Truncated cepstral distance d2
c
(L), where L is chosen as in problem 1(b).

(c) Liftered cepstral distance d2
cW

(L), using the lifter ŵ2(n) de�ned in problem 1(c).

(d) Likelihood-ratio distortions,

dLR

�
1

jA1j
2
;

1

jA2j
2

�
and dLR

�
1

jA2j
2
;

1

jA1j
2

�
(5.129)

where the subscripts 1 and 2 represent the �rst and second vowel.

(e) Itakura-Saito distortions,

dIS

�
G2
1

jA1j
2
;
G2
2

jA2j
2

�
and dIS

�
G2
2

jA2j
2
;
G2
1

jA1j
2

�
(5.130)

(f) LSF Euclidean distance.


