Lecture Notes in Speech Production, Speech Coding, and Speech Recognition

Mark Hasegawa-Johnson
University of Illinois at Urbana-Champaign

February 17, 2000
Contents

1 Basics of Digital Signal Processing .. 13
 1.1 LTI Systems .. 13
 1.1.1 What is an LTI System? .. 13
 1.1.2 Impulse Response ... 13
 1.1.3 Eigenfunctions ... 13
 1.2 Transforms .. 14
 1.2.1 Fourier Series: Dirichlet's Conditions 14
 1.2.2 Z Transform and DFT: Region of Convergence 14
 1.3 Transform Properties .. 15
 1.4 Sampling Theorem ... 15
 1.5 Downsampling .. 16
 1.6 Upsampling .. 16

2 Speech Production .. 19
 2.1 Phonetic Classification of Speech Sounds 19
 2.1.1 Consonants .. 19
 2.1.2 Vowels .. 20
 2.2 A Source-Filter Model of Speech Production 20
 2.2.1 Source Function ... 21
 2.2.2 Transfer Function .. 22
 2.2.3 Radiation Characteristic 25
 2.2.4 Complete Synthesis Models 26
 2.3 One-Dimensional Acoustic Waves 26
 2.3.1 One-Dimensional Constitutive Equations 26
 2.3.2 One-Dimensional Acoustic Wave Equations 26
 2.3.3 General Form of the Solution: Time Domain 26
 2.3.4 General Form of the Solution: Frequency Domain 26
 2.4 Parallel Admittance and Series Impedance Methods 26
 2.4.1 Series Impedance Method 26
 2.4.2 Parallel Admittance Method 27
 2.4.3 Equivalence of the Parallel Admittance and Series Impedance Methods ... 27
 2.4.4 Summary ... 28
 2.4.5 The Four Basic Lossless Impedances 28
 2.5 Concatenated Tubes Method for Finding Resonances 31
 2.5.1 The Four Basic One-Dimensional Resonators 31
 2.5.2 A Two-Tube Example: /aa/ 36
 2.5.3 A Three-Tube Example: /iy/ 37
 2.6 Summary ... 37
 2.7 Reflection and Transmission ... 38
 2.7.1 Continuity of Flow and Pressure at a Boundary 38
 2.7.2 Termination ... 39
 2.8 Transfer Functions ... 39
2.8.1 Uniform Tube .. 39
2.8.2 General Case .. 40
2.9 How to Read Spectrograms .. 41
 2.9.1 Broad Class Transitions 41
 2.9.2 How Many Segments? 44
 2.9.3 Voiced or Unvoiced? 45
 2.9.4 Measure the Formant Frequencies 50
 2.9.5 Context Effects .. 55
2.10 Exercises ... 56

3 Short-Time Signal Processing 57
 3.1 Short-Time Analysis ... 57
 3.1.1 From 1D signal to Multidimensional “Frames” 57
 3.1.2 Time-Domain Analysis 57
 3.2 Short-Time Fourier Transform 58
 3.2.1 Fourier Transform Interpretation 58
 3.2.2 Filterbank Interpretation 59
 3.2.3 Sampling in time 59
 3.2.4 Sampling in frequency 59
 3.2.5 Filterbank Reconstruction 60
 3.2.6 Implementing non-uniform filterbanks using the STFT .. 61
 3.3 Window Characteristics 61
 3.3.1 Rectangular Window 61
 3.3.2 Hamming and Hanning Windows 62
 3.3.3 Window Length ... 62
3.4 Exercises ... 63

4 Linear Predictive Coding .. 65
 4.1 All-Pole Model of the Speech Transfer Function 65
 4.2 Normal Equations .. 65
 4.2.1 Autocorrelation Method 66
 4.2.2 Covariance Method 67
 4.2.3 Choosing the LPC Order 68
 4.2.4 Choosing the LPC Gain 69
 4.3 Frequency-Domain Interpretation of LPC 69
 4.4 Lattice Filtering ... 69
 4.4.1 How to Calculate Reflection Coefficients 70
 4.4.2 Why Use Lattice Filter Instead of Direct-Form LPC? .. 70
 4.4.3 Equivalence of Lattice and Concatenated-Tube Models .. 70
 4.5 Stability of the LPC Filter 70
 4.5.1 Stability of the Unquantized Filter \(H(z) \) 70
 4.5.2 Stability of the Quantized Filter \(\hat{H}(z) \) 71
 4.5.3 Quantizing Direct-Form Coefficients Leads to Unstable Filters 71
 4.5.4 THE SOLUTION .. 71
 4.6 Log Area Ratios .. 71
 4.6.1 The Problem ... 71
 4.6.2 The Solution: Companded Quantization 71
 4.6.3 Interpretation: Log Area Ratios 73
 4.7 Line Spectral Frequencies 73
 4.7.1 The Impedance Interpretation of the LSFs 73
 4.7.2 Derivation of the LSF Polynomials 74
 4.7.3 The Augmented-Tube Interpretation of Line Spectral Frequencies 76
 4.8 LPC Distance Measures 77
 4.8.1 Itakura-Saito Distortion 77
4.8.2 Likelihood-Ratio Distortion, Itakura Distortion 78
4.9 Exercises .. 80

5 Spectral and Cepstral Distance Measures 83
5.1 Homomorphic Analysis .. 83
5.2 Definitions .. 83
5.2.1 Complex Cepstrum .. 83
5.2.2 Cepstrum .. 84
5.2.3 Example ... 84
5.3 Minimum and Maximum Phase Sequences 84
5.4 Recursive Formula for the Cepstral Coefficients 85
5.5 LPC Cepstrum .. 85
5.5.1 Complex Cepstrum .. 85
5.5.2 LPC Power Cepstrum 85
5.5.3 How is the LPC Cepstrum Usually Used? 87
5.6 Review ... 87
5.6.1 Complex Cepstrum .. 87
5.6.2 Cepstrum .. 87
5.6.3 Signals with Rational Z Transforms 87
5.7 Computational Considerations 88
5.8 Source-Filter Analysis 88
5.8.1 Cepstrum of a Periodic Signal 89
5.8.2 Cepstrum of the Transfer Function 89
5.8.3 "Lifting" to separate source and filter 89
5.9 Pole-Zero Analysis .. 89
5.9.1 Estimating the Poles 90
5.9.2 Estimating the Zeros 90
5.10 Log Spectral Distance 90
5.10.1 Power Spectrum .. 90
5.10.2 Log Spectral Distance 91
5.11 Cepstral Distances .. 91
5.11.1 Complex Cepstrum and Power Cepstrum 91
5.11.2 Cepstral L_2 Norm 91
5.11.3 LPC Cepstrum .. 92
5.11.4 Cepstral Representation of Spectral Energy, Slope, and Finer Detail ... 92
5.12 Cepstral Lifting ... 93
5.12.1 Window in Time = Conolve in Frequency 93
5.12.2 Weighted/Lifted Cepstral Distances 93
5.12.3 Symmetric Equivalent Window 93
5.12.4 Example: Rectangular Window 94
5.13 Exercises .. 95

6 Engineering Models of Audition 97
6.1 Models of Hearing ... 97
6.2 Perceptual Frequency Scales 97
6.2.1 Critical-Band Scale 98
6.2.2 Mel-Frequency Scale 98
6.2.3 Place on the Basilar Membrane 98
6.2.4 Frequency Just-Noticeable-Difference 98
6.3 Loudness ... 99
6.3.1 Loudness vs. Frequency 99
6.3.2 Intensity JND ... 99
6.4 Masking ... 100
6.4.1 Noise-Masker Ratio 101
7 Speech Coding

7.1 What is Speech Coding? .. 107
7.2 Engineering Tradeoffs ... 107
 7.2.1 Applications and Standards 109
7.3 Subjective Quality Metrics .. 109
 7.3.1 Measures of Speech Quality: Mean Opinion Scores 109
7.4 Objective Measures of Speech Quality 110
 7.4.1 Signal to Noise Ratio .. 110
 7.4.2 Segmental SNR ... 111
 7.4.3 Perceptually-Weighted SEGSNR 111
 7.4.4 Spectral Amplitude Distortion 111
 7.4.5 Noise-to-Masker Ratio ... 112
7.5 Memoryless Quantization (“Pulse Code Modulation” PCM) 112
 7.5.1 Uniform Quantization ... 113
 7.5.2 Compressed PCM .. 113
7.6 Quantization: Basic Principles .. 115
 7.6.1 Minimum Distortion Rule ... 115
 7.6.2 Mean-Squared Error, SEGNSR 115
7.7 Scalar Quantization ($L = 1$) .. 116
 7.7.1 Linear PCM .. 117
 7.7.2 Minimum-MSE Scalar Quantizer 117
 7.7.3 Semilog Companded Quantization 118
7.8 Vector Quantization ($L > 1$) .. 119
 7.8.1 Minimum-MSE Vector Quantizer 119
 7.8.2 Product Coding: VQ with the Complexity of Scalar Quantization .. 120
7.9 Adaptive Step Size Quantization (APCM) 121
7.10 Differential PCM (DPCM) ... 122
 7.10.1 Fixed Differential PCM (DPCM) 122
 7.10.2 Adaptive Differential PCM (ADPCM) 122
7.11 Perceptual Error Weighting .. 123
 7.11.1 Error Spectrum is Nearly White 123
 7.11.2 Using the Signal to Mask the Noise 123
7.12 DPCM with Noise Feedback ... 124
 7.12.1 An Alternative Representation of DPCM 124
 7.12.2 DPCM with Noise Shaping 125
7.13 LPC Vocoder ... 125
 7.13.1 A Simple Model of Speech Production 125
 7.13.2 Vocoder Parameter Calculations 127
7.14 Pitch Prediction Vocoder ... 129
 7.14.1 Purpose .. 129
 7.14.2 Excitation ... 129
7.15 LPC-Based Analysis-by-Synthesis Coding 130
 7.15.1 What is Analysis-by-Synthesis? 130
 7.15.2 LPC-based Analysis-by-Synthesis 131
 7.15.3 Frame-Based Analysis ... 131
 7.15.4 Self-Excited LPC .. 134
 7.15.5 Multi-Vector LPC-AS .. 135
 7.15.6 Perceptual Error Weighting 137
7.16 Exercises ... 138
8 Speech Recognition

8.1 Introduction to Recognition .. 145
 8.1.1 Applications of Speech Recognition 145
 8.1.2 Front-End Processor and Pattern-Matcher 146
 8.1.3 Types of Front-End Processing ... 146
 8.1.4 Statistical Speech Recognition: A Type of Pattern Matcher 147

8.2 Classification of a Single Spectrum 147
 8.2.1 Gaussian Probability Models ... 148
 8.2.2 Contour Plots of a Gaussian Distribution 148
 8.2.3 Mixture Gaussian Models ... 148

8.3 Classification of a Sequence of Spectra 149
 8.3.1 Symbol-Timed Markov Process 149
 8.3.2 Clock-Timed Markov Process: Self-Loops 151
 8.3.3 Left-to-Right Models .. 151
 8.3.4 Hidden Markov Models ... 151
 8.3.5 Example: Hidden Coin Toss ... 152
 8.3.6 Continuous-Distribution HMMs 153
 8.3.7 Example: Automatic Language Identification 153

8.4 Recognition Using a Hidden Markov Model 154
 8.4.1 Maximum Likelihood Recognition: The Forward Algorithm 155
 8.4.2 Approximate Recognition: The Viterbi Algorithm 156

8.5 Training a Hidden Markov Model .. 157
 8.5.1 Initializing the Observation Densities: Segmental K-Means 158
 8.5.2 Refining the Model: Baum-Welch Algorithm 158
 8.5.3 Multiple Observation Sequences 159

8.6 Explicit State Duration Models .. 160
 8.6.1 Duration Probabilities and Transition Probabilities 160
 8.6.2 Recognition Using Explicit Probability Densities 160
 8.6.3 Approximate Duration Modeling using Viterbi and Forward Algorithms 161

8.7 Continuous Observation Probability Densities 161
 8.7.1 Multivariate Gaussian Densities 161
 8.7.2 Mixture Gaussian Models .. 163
 8.7.3 Feedforward Neural Networks 164
 8.7.4 Initializing the Observation Densities: Segmental K-Means 167
 8.7.5 Tied Mixtures, Continuous Density Codebook 167

8.8 Spectral Dynamics .. 168
 8.8.1 Spectral and Cepstral Derivatives 168
 8.8.2 Cepstral Differences .. 169
 8.8.3 Cepstral Derivative Estimates 169
 8.8.4 RASTA ... 169

8.9 Probability Scaling in the Forward-Backward Algorithm 171
 8.9.1 What's the Problem? .. 171
 8.9.2 The Scaled Forward Algorithm 171
 8.9.3 Recognition Using the Scaled Forward Algorithm 171
 8.9.4 The Scaled Backward Algorithm 172
 8.9.5 Re-Estimation Using Scaled Parameters 172

8.10 Phone Models, Lexicon, Phonological Rules 173
 8.10.1 Recognition ... 173
 8.10.2 Training .. 173

8.11 Context-Dependent Phone Models .. 174

8.12 Deleted Interpolation ... 174

8.13 Connected Word Recognition ... 175
 8.13.1 The One-Pass Algorithm ... 175

8.14 Language Modeling ... 177
8.14.1 Maximum A Posteriori Recognition .. 178
8.14.2 N-Gram Language Models .. 178
8.14.3 Perplexity .. 179
8.14.4 Class N-Gram .. 179
8.14.5 Hierarchical Language Models ... 179
8.15 User Interface Design ... 181
 8.15.1 Dialog Modeling ... 181
 8.15.2 Guidelines for User Interface Design ... 181
8.16 Exercises ... 183
8.17 Final Project ... 184
 8.17.1 Recognizer Specifications .. 184
 8.17.2 The Design Process ... 185
List of Figures

2.1 Several sources are active at the release of a stop. A period of silence is followed by a fricative burst lasting 5-10 ms. If the stop is unvoiced and syllable-initial, fricative is followed by 30-80 ms of aspiration. When the vocal folds are brought close enough together to begin vibrating, voicing begins. .. 22
2.2 Standing wave patterns of a hard-walled acoustic resonator of uniform area, closed at $x = 0$. The amplitude of the pressure standing wave, $|P(x, s)|$, is shown using a solid line, normalized to unity magnitude. The amplitude of the flow standing wave, $|Z_0(x)|U(x, s)|$, normalized to unity magnitude, is shown using a dashed line. ... 23
2.3 Tube open at opposite end. .. 29
2.4 Tube closed at opposite end. .. 30
2.5 Quarter-wave resonator ... 31
2.6 Modes of a quarter-wave resonator ... 32
2.7 Open-ended half-wave resonator ... 34
2.8 Closed-ended half-wave resonator .. 34
2.9 Helmholtz resonator ... 35
2.10 Two-tube model of the vowel /aa/. ... 36
2.11 Three-tube model of the vowel /iy/. .. 37
2.12 Spectrogram of the phrase, “When the sunlight strikes mindrops in the air...” A spectrogram is a plot of signal energy as a function of both time and frequency. ... 42
2.13 “His ship.” The /z/ has become an /sh/ through processes of coarticulation, so that there are now two identical /sh/ phonemes in a row. The fricative noise section in the middle of the phrase looks just like a single /sh/; the only acoustic cue suggesting the presence of two fricatives is the duration, which is a bit more than 1.5 times the expected duration of a strident fricative in this context. .. 44
2.14 “Why do I owe you a letter?” Without knowing the phrase, we can guess the number of phonemes by counting the number of formant transitions, i.e. the number of significant up or down movements of either F1 or F2 or both. .. 44
2.15 Strident fricative consonants, showing differences in place of articulation (e.g. “supper” versus “zuh”) and voicing (e.g. “fuss” versus “futter”). Non-strident fricatives are formed by directing a turbulent jet of air against the teeth or some other obstacle, creating loud frication noise. ... 46
2.16 Non-strident fricative consonants, showing differences in place of articulation (e.g. “fuss” versus “thug”) and voicing (e.g. “fuss” versus “vanilla.”) Non-strident fricatives are similar to strident fricatives, but the turbulent jet of air usually does not hit an obstacle such as the teeth, so frication noise is not as loud. .. 47
2.17 Stop consonants, showing differences in place of articulation (e.g. “put” versus “tug”) and voicing (e.g. “put” versus “bug.”) .. 48
2.18 Syllable-initial unvoiced stops in English are always aspirated. These two examples show two different /p/ releases which are not strictly syllable-initial, and are therefore not aspirated. The middle /p/ in “paper” is both syllable-final and syllable-initial, so it has about half the normal amount of aspiration. The /p/ in spin is not syllable-initial at all, so it is unaspirated. 49
2.19 “Bet.” In this example, the formant frequencies are relatively constant throughout the vowel. 50
2.20 Formant frequencies of the vowels of English, as measured from a large database of male speakers [17].

2.21 The words “about,” “buy,” and “boy,” showing the three diphthongs of English: /ÆW/, /ÆI/, and /ɔW/, respectively (ARPAEFT notation). Each diphthong starts with a relatively static set of formant targets, then moves toward a briefly marked second set of formant targets.

2.22 Nasal consonants. The nasal consonants in English have the same three places of articulation (lips, tongue blade, and tongue body) as the stop consonants.

2.23 Examples of phoneme deletion and feature assimilation caused by context effects.

4.1 LPC synthesis using a lattice filter structure.

4.2 Spectral sensitivity to changes in the reflection coefficients.

4.3 LAR companding.

4.4 Acoustic resonator and lattice model with a matched impedance termination at the glottis.

4.5 Acoustic resonator and lattice filter model with a zero-admittance termination at the glottis.

4.6 Acoustic resonator and lattice filter model with a zero-impedance termination at the glottis.

6.1 An example of an equal-loudness curve as a function of frequency.

7.1 The three major engineering applications of speech signal processing.

7.2 An approximate comparison of the speech qualities, bit rates, and computational complexities achieved by various speech and audio coding algorithms.

7.3 Mean opinion scores for various types of speech coders.

7.4 Pulse-code modulation (PCM) quantizes each sample of a signal by rounding it to the nearest of a set of fixed quantization levels.

7.5 Mu-law companding function.

7.6 The nth Voronoi region is defined as the set of points in N-space which are closer to the nth codebook vector than to any other codebook vector.

7.7 Scalar quantization involves quantizing each sample independently of the previous and following samples.

7.8 The mu-law companding function.

7.9 Schematic of a DPCM coder.

7.10 The minimum-energy quantization noise is usually white noise.

7.11 Shaped quantization noise may be less audible than white quantization noise, even at slightly higher SNR.

7.12 Bandwidths of the LPC poles are expanded by moving the poles away from the unit circle (poles at r are shown as circles, poles at e as triangles).

7.13 An alternative implementation of DPCM.

7.14 DPCM with noise filtering.

7.15 A model of speech production which might be used in a speech synthesis program.

7.16 A simplified model of speech production, whose parameters can be transmitted efficiently across a digital channel.

7.17 A pitch-predictive vocoder.

7.18 Transfer function of the pitch prediction filter for several values of the prediction coefficient.

7.19 LPC analysis by synthesis coder.

7.20 The frame/sub-frame structure of most LPC analysis by synthesis coders.

7.21 An LPC analysis by synthesis coder with two codebooks: an “adaptive” codebook, which represents the pitch periodicity, and a “stochastic” codebook, which represents the unpredictable innovations in each speech frame.

8.1 Most speech recognizers include a front-end processor, which converts the signal into some sort of spectral vectors, and a pattern-matching unit, which tries to match the spectral vectors to a set of pre-defined models.

8.2 Contour plots of Gaussian and mixture-Gaussian probability densities.

8.3 A model which generates a random sequence of ones and twos.

8.4 A model of a process which speaks the words “one” and “two” in random order.
8.5 A left-to-right Markov process .. 151
8.6 A hidden Markov model generates spectral vectors based on some internal state; the internal state of the model can never be known with certainty .. 152
8.7 Simple Markov models of the words “hai” (/ai/, if we ignore the /h/) and “ja” (/ia/, if we pretend that /j/ and /i/ are the same). Transition probabilities are designed so that the /i/ states last an average of 1.5 frames, and the /a/ states last an average of 5 frames .. 154
8.8 Contour plots of Gaussian and mixture-Gaussian probability densities .. 162
8.9 Flow-chart and classification space of a single-neuron neural network .. 165
8.10 Flow-chart, and classification space, of a two-level neural network .. 165
8.11 Classification space showing a non-convex region S_i .. 166
8.12 Flow-chart of a three-level neural network .. 166
8.13 In the RASTA method, frame-to-frame variations in a spectral estimate are smoothed using a filter like the one shown here .. 170
8.14 A network of triphone models representing the phrase “one cat.” Phones are written in the ARPABET transcription system .. 174
8.15 Deleted interpolation linearly combines the trained model parameters of monophone, diphone, and triphone models .. 175
8.16 A detailed model of word transition probabilities can be created by parsing words into phrases, and phrases into complete sentences .. 180